\documentclass[10pt,letterpaper]{article} \usepackage[top=0.85in,left=2.75in,footskip=0.75in]{geometry} \usepackage{amsmath,amssymb} \usepackage{changepage} \usepackage[utf8x]{inputenc} \usepackage{textcomp,marvosym} \usepackage{cite} \usepackage{nameref,hyperref} \usepackage[right]{lineno} \usepackage{microtype} \DisableLigatures[f]{encoding = *, family = * } % color can be used to apply background shading to table cells only \usepackage[table]{xcolor} \usepackage{array} % create "+" rule type for thick vertical lines \newcolumntype{+}{!{\vrule width 2pt}} % create \thickcline for thick horizontal lines of variable length \newlength\savedwidth \newcommand\thickcline[1]{% \noalign{\global\savedwidth\arrayrulewidth\global\arrayrulewidth 2pt}% \cline{#1}% \noalign{\vskip\arrayrulewidth}% \noalign{\global\arrayrulewidth\savedwidth}% } % \thickhline command for thick horizontal lines that span the table \newcommand\thickhline{\noalign{\global\savedwidth\arrayrulewidth\global\arrayrulewidth 2pt}% \hline \noalign{\global\arrayrulewidth\savedwidth}} % Remove comment for double spacing %\usepackage{setspace} %\doublespacing % Text layout \raggedright \setlength{\parindent}{0.5cm} \textwidth 5.25in \textheight 8.75in % Bold the 'Figure #' in the caption and separate it from the title/caption with a period % Captions will be left justified \usepackage[aboveskip=1pt,labelfont=bf,labelsep=period,justification=raggedright,singlelinecheck=off]{caption} \renewcommand{\figurename}{Fig} % Use the PLoS provided BiBTeX style \bibliographystyle{plos2015} % Remove brackets from numbering in List of References \makeatletter \renewcommand{\@biblabel}[1]{\quad#1.} \makeatother % Leave date blank \date{} % Header and Footer with logo \usepackage{lastpage,fancyhdr,graphicx} \usepackage{epstopdf} \pagestyle{myheadings} \pagestyle{fancy} \fancyhf{} \setlength{\headheight}{27.023pt} \lhead{\includegraphics[width=2.0in]{PLOS-submission.eps}} \rfoot{\thepage/\pageref{LastPage}} \renewcommand{\footrule}{\hrule height 2pt \vspace{2mm}} \fancyheadoffset[L]{2.25in} \fancyfootoffset[L]{2.25in} \lfoot{\sf PLOS} \usepackage{gensymb} \usepackage{textgreek} %% Include all macros below \DeclareMathOperator{\R}{R} \newcommand\OR[1]{\R{\left(#1\right)}} \newcommand{\vv}[1]{\mathbf{#1}} \DeclareUnicodeCharacter{2212}{-} \def\inc/{\note{cite}} \def\inr/{\note{ref}} \def\check/{\note{check}} \def\ea/{\textit{et al.}} \def\ca/{C\textsubscript{\textalpha}} \def\cb/{C\textsubscript{\textbeta}} \def\matmet/{\emph{Materials and methods}} %% END MACROS SECTION %remove before prod \usepackage{color} \newcommand{\note}[1]{\textcolor{red}{\{#1\}}} \usepackage{graphicx} % % Figures % arrange differently % \def\periphcolor/{blue} \def\tmcolor/{red} \def\colwidth{6.4cm} \def\halfwidth{4.35cm} \def\quarterwidth{2.7cm} %\def\bigfigside{11.4cm} \newcommand{\FigModelIllustration}{ \begin{figure}[ht] \centering \includegraphics[width=\colwidth]{Fig1.pdf} \caption{The definitions of \emph{protrusions} and \emph{co-insertable protruding hydrophobes}. Panel A shows a cartoon representation of the C2 domain of human phospholipase A\textsubscript{2} (PDB ID: 1RLW), and panel B shows the convex hull for the same protein. All \ca/- and \cb/-atoms are shown as spheres. Hydrophobes are coloured orange. The convex hull for the \ca/- and \cb/-atomic coordinates is shown in blue. All spheres visible on the convex-hull representation are vertex residues. \emph{Protrusions} are defined as vertex residues with low local protein density, and shown as large spheres. \emph{Co-insertable protruding hydrophobes} are protruding hydrophobes that are adjacent vertices of the convex hull, they are shown connected by orange lines. Small black spheres are vertex residues that have high local density, and do therefore not meet the criteria for protrusions.} \label{FigModelIllustration} \end{figure} } \newcommand{\FigTmPeriphAaComparison}{ \begin{figure}[ht] \centering \includegraphics[width=\colwidth]{Fig10.pdf} \caption{Large aliphatic and aromatic side chains are particularly over-represented on protrusion on peripheral proteins. Panel A shows the weighted fractions (Eq~\ref{eq:weighted_frec}) of hydrophobic amino acids on protrusions from peripheral proteins (\periphcolor/) and from proteins in the reference set (\tmcolor/). In panel B, the contrast between the two sets is quantified by the odds ratio (Eq~\ref{eq:odds_ratio}), so that positive values reflect higher frequencies in the set of peripheral proteins than in the reference set. More precisely the vertical axis denote $\ln\OR{\mathrm{peripheral}, \mathrm{reference}, \hat{F}_{aa, \mathrm{protrusion}}}$, with $aa$ representing each of the standard amino acids. Error bars are 95\% confidence intervals.} \label{FigTmPeriphAaComparison} \end{figure} } \newcommand{\FigProtrusionDensityHistograms}{ \begin{figure}[ht] \centering \includegraphics[width=\colwidth]{Fig2.pdf} \caption{Hydrophobes are more common on protruding positions in peripheral proteins, than in the reference set. The plots show frequencies of hydrophobes on surface amino acids, both on protrusions (A and C) and among all solvent exposed amino acids (B and D). Compare peripheral proteins (\periphcolor/) and the reference set (\tmcolor/). The horizontal axes show the mean fraction (Eq~\ref{eq:mean_frac_family}) of protrusions or solvent exposed amino-acids that are hydrophobic. The vertical axis shows the fraction of protein families.} \label{FigProtrusionDensityHistograms} \end{figure} } \newcommand{\FigContainingProtrusions}{ \begin{figure}[ht] \centering \includegraphics[width=\colwidth]{Fig5.pdf} \caption{\emph{Co-insertable protruding hydrophobes} are common in peripheral proteins and rare in the reference set. The plot shows the occurrence of \emph{co-insertable protruding hydrophobes} on protein surfaces. Panels~A and~B show the weighted fraction (Eq~\ref{eq:weighted_existance_frec}) of proteins that have protruding hydrophobes, in the peripheral proteins (\periphcolor/) and the reference set (\tmcolor/). We have differentiated here between protrusions that have at least one co-insertable protruding hydrophobe (labeled ``Co-ins.''), and those that have not (labeled ``isolated''). The analysis is done separately for two groups of proteins according to the total number of protrusions on the protein surface ($[0,25\rangle$ in panel A, $[25,50\rangle$ in panel B). Panel~C shows the frequency distribution of the total number of protruding residues (``\# protrusions'') for all proteins. The selections analysed in panel~A and~B are found between the dashed lines in panel~C. Error bars in panel~A and~B are 95\% confidence intervals.} \label{FigContainingProtrusions} \end{figure} } \newcommand{\FigNeighboursVsOddsRatio}{ \begin{figure}[ht] \centering \includegraphics[width=\colwidth]{Fig3.pdf} \caption{On peripheral proteins, protrusions in low density regions are more often hydrophobes, compared to the reference set. The plot shows the logarithm of the odds-ratio (Eq~\ref{eq:odds_ratio}) comparing the frequency of hydrophobes on \emph{vertex} residues in peripheral proteins and the reference set. Positive values reflect higher frequencies in the peripheral proteins. The horizontal axis shows the protein density $d$ around the protrusion, measured as the number of \ca/ and \cb/ atoms within $1 nm$. Vertex residues are all on the convex hull, but only the vertex residues with $d<22$ are protrusions. The leftmost bar with $d<7$ corresponds mostly to chain terminals. More precisely, the vertical axis shows $\OR{A, B,\hat{F}_{\mathrm{hydrophobe}|\mathrm{vertex}\cap l