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Abstract
Loops in proteins connect secondary structures such as alpha-helix and beta-sheet, are often on the
surface, and may play a critical role in some functions of a protein. The mobility of loops is
central for the motional freedom and flexibility requirements of active-site loops and may play a
critical role for some functions. The structures and behaviors of loops have not been much studied
in the context of the whole structure and its overall motions, and especially how these might be
coupled. Here we investigate loop motions by using coarse-grained structures (Cα atoms only) to
solve for the motions of the system by applying Lagrange equations with elastic network models
to learn about which loops move in an independent fashion and which move in coordination with
domain motions, faster and slower, respectively. The normal modes of the system are calculated
using eigen-decomposition of the stiffness matrix. The contribution of individual modes and
groups of modes are investigated for their effects on all residues in each loop by using Fourier
analyses. Our results indicate overall that the motions of functional sets of loops behave in similar
ways as the whole structure. But, overall only a relatively few loops move in coordination with the
dominant slow modes of motion, and that these are often closely related to function.

Introduction
The importance of understanding loops in proteins

Protein motions are extremely important for their functioning, and it is now well established
that domain motions are the dominant motions and that these motions are often relatable to
their functions. So immediately there the question arises of whether loops are controlled in
their motions by the domain motions and are slow, or whether they move independently and
thus more rapidly. The first case, where the loops move together with the large domain
motions, corresponds to the protein structure being strongly cooperative in its motions, and
these motions will reflect a type of allostery. Distinguishing between these two extremes is
the intention of the present study of the behavior of protein surface loops.

One category of loops whose function is clear are those large loops that cover binding sites,
and are clearly important since they have to open in order to facilitate binding, and thus
these motions are clearly critical for function. But, other loops may have functional roles
such as chaperoning the transport of ligands from secondary binding sites towards their
primary binding site. Such behaviors might reflect a more deterministic behavior than is
usually observed in molecular simulations. New ways of investigating loop behaviors may
assist in our understanding of such biased, non-random behavior in biology.

If loops that are functionally important move in a strongly coordinated way with the larger
domain motions, i.e., the slowest motions, then it might even be possible to predict which
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loops are likely to be functional based on computations that identify them as moving more
slowly. In addition there is the issue of how the loops move with respect to the domain to
which they are attached. If they are fully coordinated in a positive way then they are moving
as if the domain and the loop together were a rigid block. If they are moving in a strongly
anti-correlated way, this would require articulated joints between the domain and the loop,
but whether correlated or anti-correlated both could be motions effectively under the control
of the domain motions.

First we must define loops for the purpose of this investigation. Proteins consist primarily of
three types of secondary structure elements: α-helices, β–strands (forming either parallel or
antiparallel β-sheets) and loops. Loop regions here are taken to be those conformationally
irregular fragments of the chain, that connect between two secondary structure elements and
lie upon the surface.

Loops are also quite variable in their lengths and sometimes there are even gaps in the loop
regions of some reported protein structures, because of disorder. Godzik and collaborators
(1) recently surveyed the PDB to find ordered-disordered pairs; residues of the same protein
in two different crystals, where the atomic coordinates were resolved in one, but not in the
other. They found that this type of disorder (sometimes relates to post-translational
modification) is overrepresented in loop regions (46% of ordered-disordered pairs). While it
might be tempting to interpret the missing parts of loops as moving independently, it seems
likely that the details of the crystal packing would be likely to confound such a simple
interpretation. Completing the structures of these missing regions in loops and learning
about the range of loop conformations are important issues not yet a standard computation,
that will not be considered here, even though these issues are important for evaluating the
importance of the mobilities of all loops. Solving these issues would however result in an
improved understanding of the functional roles played by loops.

Diverse approaches have been applied to fill in the missing information in loop regions.
Joosten et al. (2) have combined structural and electron density information to find likely
conformations of loop regions. Fiser et al. (3) presented an improved and automated
modeling technique for loop predictions using spatial information and optimization of a
pseudo-energy function. Felts et al. (4) predicted native conformations using Optimized
Potentials for Liquid Simulations, all atom (OPLS-AA) force fields, and Analytical
Generalized Born plus Non-Polar (AGBNP) implicit solvent models, in combination with
torsion angle conformation based search. By understanding the relationship between the
motions of loops and larger domains, it might even be possible to improve crystallographic
refinements of loop regions. Importantly, a full comprehension would permit predictions of
ensembles of loop conformations, rather than static structures.

Sellers et al. (5) predicted loops in inexact environments by examining how loop refinement
accuracy is affected by errors in the surrounding elements such as backbone and side-chain
positions. They used augmented loop prediction methods that optimize the conformations of
the side chains simultaneously. This method helps to recover near-native conformations for
many perturbed structures. Olson et al. (6) examined ab initio methods for predicting protein
loops by using multi-scale conformational sampling. They used physical energy functions to
score the models. Peng and Yang (7) developed a knowledge-based loop prediction method
without the necessity of constructing hierarchically clustered length-dependent loop
libraries. This method first predicts the local structure of the loop and then structurally aligns
it against all possible motif templates. Zhu et al. (8) have developed an improved sampling
algorithm and an energy model for protein loop prediction that yields a smaller root mean
square deviation from the native structure. They discussed their results in the context of the
accuracy of continuum solvation models. Xiang (9) discussed the advances in protein
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homology modeling and the contribution of loop structure predictions for the overall
prediction of protein structures. According to Radivojac et al. (10), some of the intrinsically
disordered regions of protein structures consist of long loop regions with functional roles.
Since conformation and dynamics are intrinsically related, any improvements in
understanding one will likely improve the understanding of the other. Thus, the methods
proposed in this paper may help us to better understand the relationship between functional
motions and loop conformations.

Protein loops play an important role in protein function since they are often exposed to the
solvent environment and hence may readily interact with other molecules. It is widely
understood that their structures are not random coils (even for longer loops), and thus have
some defined characteristics (11). Conformations of loops play a significant role in protein
docking (12) and in stabilizing active sites through loop-scaffold interactions (13). Smith et
al. (12,13,14) investigated the idea of guiding protein-protein interactions through contacts
between surface loops in proteins. Hence flexibility of protein loops and their dynamics are
important factors for understanding protein functions, as demonstrated further by Yao et al.
(15) who used sampling algorithms to explore conformations of flexible loops. Krieger et al.
(16) have shown that folding mechanisms in proteins vary widely depending on native-state
topology and details such as the relative contact order (RCO). This indicates that protein
loops and their topologies might also play an important part in protein folding.
Conformational evaluation of loops and their structural variability was studied by Li et al.
(17) who indicated the importance of loop structures for protein design.

Hu et al. (18), demonstrated through high-resolution design of protein loops that small
changes in protein energetics can perturb the structure of proteins. They studied longer loops
adopting specific conformations with the Rosetta molecular modeling program to find low-
energy sequence-structure pairs. Their results suggest that the high-resolution design of
protein loops may become feasible.

We previously investigated (19) the fluctuation dynamics of the tubulin dimer to elucidate
the functional motions that might relate to activities such as binding, polymerization and
assembly and discovered that a loop that covers the GTP binding site moves in coordination
with a large-scale rotation between the α and β subunits. This illustrated how loop motions
can be controlled by the large domain motions and can be slow. Also we investigated (30)
the enzyme triose phosphate isomerase and observed that its binding site loop opened and
closed only in the intact dimer, and not in the monomer, in a slow motion coordinated with a
large-scale domain-domain motion.

Espadaler et al. (20) developed ArchDB, an automated classification tool for the structures
of protein loops that connect different supersecondary structures and play an important role
in initiating and maintaining the overall functions of a protein. Oliva et al. (20,21),
computationally derived an extensive characterization of loop conformations that could
enhance model building by comparison studies. Groban et al. (22) illustrated
phosphorylation driven changes in loop conformation using the activation loop in CDK2.
Kolodny et al. (23) approached the ‘loop closure problem’ using inverse kinematics. They
proposed an algorithm for generating conformations of candidate loops within gaps in
protein structures to complete protein structures so that their biological functions can be
determined. Gerstein and Chothia (24) demonstrated the significant mobility of surface
loops that can move over a distance of 10 Å to cover the active site, and showed that this
motion is propagated outwards towards other regions of protein structure that have no
contact with the ligand. They suggested that the whole protein consists of several different
shells of increasing mobility. Andrec et al. (25) have developed a novel approach for
detecting statistically significant differences in the structures of loops between crystal and
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NMR-determined structures. Their approach is based on structural superposition and the
analysis of the distributions of atomic positions relative to a mean structure. Their studies
indicate that physical factors and the environment play a role in determining protein
conformations. Sudarsanan et al. (26) used information from the backbone conformation of
dimers to develop an automated method for modeling the backbones of protein loops that
obtains near-native loop conformations from an ensemble of sterically allowed
conformations. Street et al. (27) investigated the physical-chemical determinants of the turn
conformations in globular proteins, concluding, as have many others, that turns can be
classified into a small number of discrete conformations. Kempf et al. (28) examined how
the loops in triosephosphate isomerase facilitate substrate access and catalysis. They
investigated the dynamic requirements for functional hinges and elucidated the important
principle of motional freedom and flexibility requirements for active-site loops, which
control the open and closed states of active sites. Their results demonstrate the importance of
catalytic hinge design in proteins.

In the present study we will investigate loop motions with elastic network models. We are
interested in analyzing loop motions to see if they move independently or in coordination
with large domain motions. We thus are able to identify the local motions of loops that make
the largest contribution to the overall domain motions. The focus is on the dynamics of all
the surface loops present in five diverse proteins: reverse transcriptase, triosephosphate
isomerase, tubulin, protease, and myoglobin. Each of these proteins is distinct from the
others in its topology and function, thus providing a small but diverse test set. The loops
present in these proteins are known to have diverse functional behaviors. The choice of
reverse transcriptase was based upon the importance of the loop motions that provide access
to the polymerase site, specifically related to how the fingers and the thumbs move to open
and close this site, as shown by Bahar et al. (29). Including triosephosphate isomerase was
motivated by our previous observation of the importance of the loop moving over the active
binding site (30). The loop covering the GTP binding site in tubulin was also shown
previously to be coordinated with a slow motion of the protein (19). We have previously
shown that this motion occurs together with the dominant motion, which is a rotation
between the two subunits. The flaps of the protease are well known loops that regulate
access to its binding site. The behaviors of the loops in these five proteins are examined in
detail below and our findings suggest that functional loops behave in coordinated ways with
the rest of the structure, rather than as random motions.

Materials and methods
Normal Mode Analysis

To study the kinematics of residues constituting loops we use NMA (normal mode analysis)
on the coarse-grained elastic network models of structures. The structures are represented by
Cα atom coordinates only. Harmonic springs are used to connect the Cα atoms in order to
represent the protein structure as an elastic network. The Gaussian Network Model (GNM)
is one of the simplest of elastic network models, originally applied to protein dynamics by
Bahar et al. (31) and Haliloglu et al. (31,32) who applied the approach of Tirion et al. (33) in
a coarse-grained way to both bonded and non-bonded contacts in proteins and represent their
interactions with a single universal spring parameter. This model has its deep origins in the
rubber like elasticity theory of Flory, James and Guth, James and Guth, Kloczkowski et al.,
Skliros et al. (34,35,36,37,38). Each normal mode corresponds to a different frequency of
oscillation. Extensive applications of NMA to biological and chemical systems have been
discussed in Cui et al., Jernigan and Kloczkowski, Sen et al. (39,40,41). The Anisotropic
Network Model (ANM) developed by Atilgan et al. (42), can be used to compute the
directions of motions of all points in the structure with the coarse-grained elastic network
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model, whereas the original GNM provided only the amplitudes of motion. We employ the
ANM model throughout our following analyses.

Kinematics of Proteins
Our method of solving the kinematics of proteins in the coarse-grained representation is
based on Lagrange’s equation for the potential and kinetic energy of the system, as
described by Kim et al., Kim et al. a, Kim et al. b, Schuyler and Chirikjian, Schuyler and
Chirikjian (43,44,45,46,47). As a first step, a rigid body translation and rotation of the
structure is performed, so that the center of mass lies at the origin of the coordinate system
and the moment of inertia tensor is diagonal. This procedure is described in detail in
Supporting Information Section A.

To solve for the kinematics of the protein we define the coordinates as

(1)

where R ⃗i (t) and R⃗i (0) are the instantaneous and the starting position vectors for the ith point

and  is the displacement vector. The potential energy of the system can be written as
(details shown in Supporting Information Section B)

where K is the matrix of the order 3N×3N which depends on spring constants and initial
position vectors of all points in a structure.

If we take  for each time t then we find the solution for
the elastic model for all values of i is given by

(2)

where λi and ei (i = 1,…, 3N) are the eigenvalues (square of angular frequencies) and
eigenvectors (normal modes) of the system. For more details see Supporting Information
Section C. For evaluation of the motions of loops we select the components of the 3N-

dimensional vector  that correspond to the coordinates of the residues in the loop. We
then study their time evolution by solving Eq. (2).

Identifying the dominant normal modes by Fourier Analysis
The essence of equation (2) is that it calculates the displacement of each coordinate from the
equilibrium position at any given time t. We set the initial conditions of the fluctuations in
such a way that the initial moment of inertia of the system is zero. We want information
from time-dependent displacements to reconstruct the signal. The solution comes from the
Nyquist-Shannon theorem, Shannon (48), which states that if the signal x(t) has no angular
frequencies higher than Ω0, it is completely determined by giving the ordinates as a series of
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points separated by time intervals . For the current case, we know that the maximum

angular frequency of the system is the square root of the maximum eigenvalue, .

This corresponds to selecting a sampling period of  or Ωs ≥ 2Ω0. Furthermore we
see from Eq. (2) that the motions of residues can be expressed as a combination of
sinusoidal functions, making them periodic.

The maximum period of the system that defines the final time in our calculations is

, λmin ≠ 0. For each element of  we calculate its time evolution,

following from Eq. (2), at time intervals t = 0,Ts,2Ts,…, sTs, with  up to Tmax. To
each of the 3N coordinates we can assign an s-length discrete time signal, called H(n) =
ΔR(nTs) that is periodic with the period Tmax.

The Discrete Fourier Transform DFT of this signal is given by:

(3)

To calculate all the s-entries of that signal we require s2 multiplications and s(s−1) additions.
The Fast Fourier Transform (FFT), as proposed by Cooley and Tukey and Singleton (49,50),
significantly reduces the computational cost.

In order to recover H(n) from FH(k), we apply the inverse Discrete Fourier Transform
defined as:

(4)

FFT also applies to the inverse Discrete Fourier Transform, and the interested reader might
refer to the Digital Signal Processing literature such as given in Antoniou, ElAli, Hayes
(51,52,53). Eqs (9–10 in (52)), imply that the magnitude of FH (k) is symmetrical about the

point , thus |FH (k)| = |FH (s−k)|, and ∠FH (k) = −∠FH (s−k) for the phase of the signal.
The lowest frequencies of the signal are located at the ends of FH (k) whereas the highest
frequencies are located in the middle. It is a symmetric signal with FH (p−K/2)=FH (p+ K/2),
where k, p∈[1,2,…,K]. It was also noted in reference (52) that the distances between the

successive values of k in FH (k) are given by the angular frequency resolution . The
correspondence between indices k of FH (k) and the eigenvalues of the system can be
specified as given in Supporting Information Section D.

To evaluate the impact of the lowest frequency motions on the system, we first identify the
proper k indices in FH (k). Then we set the value of FH (k) for the k’s that do not belong in
that range to zero which leads to the new FFT F′H (k). Then we take the inverse DFT
(Discrete Fourier Transform) of F′H (k), thus obtaining a new discrete time signal H′(n) that
depends only on the lowest normal modes of the system. Finally we compute the Pearson
correlation between H′(n) and H(n) (46). The higher the value of the correlation, the greater
the impact of the lowest normal modes is on the motions of the system.
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Computing Changes in Internal Distances
We also consider the changes in the internal locations of the structure points with ANM.
This is the change in internal distance, computed as

(5)

These values are obtained directly from the inverse of the Hessian matrix from which the
normal modes are derived.

(6)

where Γ is the matrix of second derivatives of the potential energy (Hessian) for the
structure for which the normal modes (ei) are computed. Since there are six zero eigenvalues
in ANM corresponding to the rigid body motions, Γ is not invertible. Thus, instead we

compute its pseudo-inverse: .

Loop Identification
In our study we first identify the surface loops on the proteins. We identify these loops in
proteins by excluding all residues identified by DSSP (54) as H, G, I, or E, corresponding to
standard α, 310, and π-helices, and β-strands, respectively. We retain isolated beta-bridges
and hydrogen bonded turns to prevent short loops interrupted by these elements from being
discarded. We focus on surface loops by also rejecting any residue having surface exposure
less than 5% in an extended A-X-A chain using NACCESS program (55) to compute
relative solvent accessibility. We also set the requirement that the length of a loop must be
four or more residues. Visual inspection of the 5 protein structures studied in this work show
that this selection appears reasonable. The identity of all loops studied here is given in the
Supporting Information Section E. The functional loops are defined as those loops which
contain one or more functional sites. Information about the functional parts of the proteins
and the functional loops is provided in the Supporting Information Section F. Functional
information is derived from the NCBI Protein database and manually related to the
corresponding protein structures.

Results and Discussion
The main purpose of this study is to answer three major questions. (i) Do protein residues
move overall independently, or do they move in coordination with the entire structure? (ii)
Do loops in proteins move along with the whole structure or do they exhibit a different
behavior? (iii) Do the functional loops move independently or in coordination with the slow
motions, and do they move like non-functional loops? We attempt to answer these questions
by investigating five different proteins in terms of function and topology, which are given in
Table 1. To address the first question, that is whether proteins residues move individually or
collectively we employ the Anisotropic Network Model (ANM). This model depends on the
whole structure of the protein through a connectivity matrix, dependent on topology. In this
study, we find that there is a close correspondence between the behavior of loop motions
and the entire structure as observed in the protein reverse transcriptase (19). In Figure 1, we
show the correlation between the motions obtained for the first 6 normal modes (the slowest
motions) for all residues in comparison with the loop residues for four proteins studied in
this work. (For myoglobin see Supporting Information G.) Residue indices are sorted
according to the increasing values of correlations. The first six modes are the slow,
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collective, low frequency motions of the structure. We see that in this case, the overall
motions of the loops do not differ much from the motions of the whole structure.

For each coordinate of each residue, we calculate the displacement from the initial position
at several time instances. We thus construct a discrete time signal H. The details of how we
obtain this signal are explained in the Methods section. In the computations given below, H
is the kinematic response of each coordinate of each residue based on all normal modes
whereas H′ is the similar kinematic response based on a subset of the lowest normal modes.
Thus H is the full FFT signal while H′ is the FFT signal corresponding to the low frequency
normal modes. High correlations between these two will indicate a dominance of the low
frequency motions. In Figure 1 these correlations are shown, and we can see that when all
protein residues are considered that they move with the global (collective) domain motions
since the percentage of motion represented by the six lowest normal modes is always above
50%.

We have also computed the mean correlations < ρH,H′ > between H and H′ averaged over the
residues within the loops, for all loops in a given protein. Similarly, we compare correlations
computed by using all normal modes in Eq. (2) with those obtained by using only the
slowest modes (details are given in the Methods section). Results are shown in Figure 2 for
loops belonging to chains A and B of reverse transcriptase and of tubulin (for
triosephosphate isomerase, protease and myoglobin see Supporting Information G).
Similarly as in Figure 1, the loop indices are sorted according to ascending values of the
correlations. Circles identify functionally important loops.

From Figure 2 we see that the mean impact of the first 6 normal modes on the loops ranges
between 65–99%, a slightly larger range of correlations than the impact of the first 6 normal
modes on all residues of the proteins. Thus from Figure 2 we conclude that protein loops
move as a part of a domain to a somewhat greater extent than all other parts of the protein
structures. The slightly larger correlations may be attributed simply to the loops being
investigated residing on the outside of the structures

For the loops of reverse transcriptase we know that loops with indices
2,4,5,6,8,14,18,22,24,27,28 on chain A and 8 on chain B control access to the catalytic
residues or contain binding residues. We see from Figure 2 that motions of these functional
loops do not differ significantly from motions of other, non-functional loops. Likewise for
tubulin (Figure 2), the loops with index numbers: 4, 6, 9 from chain A and 5, 8, 9 from chain
B responsible for regulation of the interactions with other tubulin dimers do not differ in
behavior much from the average behavior of the loops of tubulin. We also randomly
generated 100,000 partitions of the loops into two groups (data not shown) where the
smaller group was the minimum of 15 or half of the loops. The most significant partitions
(determined by the amount of difference in average mean squared fluctuation) were either
trivially different from one another or corresponded to groups of loops that were farthest
from the protein’s center of mass.

In Supporting Information F we show the location of functional loops on each structure.
Hence, the answer to the third question could be that functional loops do not move in a more
coordinated way with the rest of the structure than regular loops, although some individual
loops may do so (see Fig. 2).

Normal mode calculations are often performed to elucidate which residues or atoms in a
molecular structure are the most mobile. Active site residues are often held relatively rigid.
Two supporting cases here are reverse transcriptase and protease where the catalytic
residues are within a cleft where they are held relatively rigid. It is the movement of the
surrounding structural elements that regulate access to these catalytic residues that facilitate
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access to the protein active site. However, another quantity which may be informative is the
internal mean square distance changes described by Eq. 5. Internal mean square distance
changes can be calculated directly from the Hessian matrix used to generate the normal
modes in ANM using Eq. 6. We have employed (57) ANM models built with uniform
springs with cutoffs ranging from 10–15 Å, as well as with springs having inverse square
dependences on distance and obtained similar results. The mean square internal distance
fluctuations, (ΔRi − ΔRj)2 >, describe the change within a structure; how the normal modes
stretch, compress, or otherwise rearrange the internal structure locally. If this change in
internal distance is zero for a given (i, j) pair, it means that the two points move together
fully rigidly (the distance between them does not change). We have analyzed the present
five protein structures (data not shown) and concluded that the areas of a protein with the
smallest internal mean square distance changes are the cores, and as one moves further away
from the stable cores the internal distance fluctuations increase. Figure 3 shows the mean
internal RMSD for each loop of reverse transcriptase and tubulin. (For triosephosphate
isomerase, protease and myoglobin see Supporting Information G). We see that those loops
that are functional do not have lower or higher RMSDs than nonfunctional loops. Hence the
nonfunctional loops do not differ in the internal conformational behavior from the
nonfunctional ones.

It is also of interest to locate the loops on protein structures that have the highest correlations
according to Figure 2. These loops are highlighted in Figure 3 for the HIV-1 reverse
transcriptase structure and are mostly associated with the areas surrounding catalytic
residues (see Supplemental Section H for the other four proteins). In Figure 4 we show a
zoomed in view of the polymerase active site where a large loop hangs over the opening
between the thumb and fingers. This loop may act to regulate substrate access to the
catalytic residues and influence binding on the interior of the thumb and fingers (white
arrow in the lower part of Figure 4) domains. Yellow surfaces correspond to experimentally
verified nucleotide binding residues. Another loop with a very high correlation coefficient is
marked with a solid black arrow in part C that may also interact with bound substrate. It is
likely that many of these loops owe their high correlation to the large hinge motion through
the middle of the structure that is seen in the dominant mode of motion.

For the sake of finding the amount of correlation or anti-correlation among the residues
which correspond to only functional and non functional loops, we have reduced the
correlation map for ANM from all residue set up to loop residues only. We have analyzed
these correlation maps for all these functional and non-functional loops for all five proteins
for only first six normal modes which correspond to the global motions of these proteins as
shown in Figure 5 (for protease) and in the Supporting Information I (for myoglobin,
triosephosphate isomerase, tubulin and reverse transcriptase). These correlation plots for
only loop residues exhibit a significant amount of correlations mainly among the functional
loops. Also in some cases, there is an extent of anti-correlation among certain functional
loops in particular modes, which again explains a particular functionality for that protein.

In Figure 5 the functional and non-functional loops are shown in blue and red, respectively.
The total number of loops of protease is 18 of which only 9 (with loop indices
1,2,5,6,7,10,11,14 & 15) are functional. For protease, the total number of residues is 338,
but as we have excluded the residues belonging to other secondary structure elements (alpha
helices and beta sheets) and considered only the residues belonging to the loops, the number
of residues is much lower than 338. We have used a white demarcation line between the two
adjacent loops to clearly distinguish the correlations and anti-correlations in these loop
residues. The correlation ranges from +1 (shown in green) to −1 (black). Also there have
been cases where we have found no correlation which has been marked by white color.
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We have also calculated the percentage of total number of functional loops which move in
correlation for all these five proteins under the first six normal modes. This enables us to
address in a more informative way a question whether the functional loops behave in a more
coordinated way with the slow motions, or if their behavior is independent of the global
motion. Figure 6 shows the results for all the five proteins. We have found that
approximately 40% to 70% of the total number of functional loops move in coordination for
majority of these proteins in most of the different lowest six normal modes which is again a
significant manifestation of dynamical cooperativity considering that these functional loops
are not adjacent and some of them are really far apart from each other.

Conclusion and Outlook
In the present paper, we have considered the motions of the surface loops in five proteins.
By applying a novel method that combines ANM and FFT we are able to identify which
normal modes have the largest impact on the motions of individual loops. We observe a
broad range of behaviors, with some loops moving in the slowest modes, which implies that
their motion is strongly linked with the global, collective motions of the structure and others
moving with the fast modes.

We know that loops are parts of protein structure that are likely to be more susceptible to the
influence of the external environment. Environmentally influenced changes in loop
structures or dynamics may lead to radical structural changes of the whole protein. The
reverse may hold also because of the protein’s cohesiveness, so that external influences
changing loop conformations could also push the large domains into different positions,
leading to allosteric transmission.

Despite the evident successes of normal mode analysis and elastic network models in
explaining functional protein motions, ligand binding, allosteric effects, etc. there are certain
limitations that are intrinsic characteristics of these models. One basic assumption is that the
potential is harmonic, i.e. it is a simple quadratic function with a single minimum. This
significantly simplifies the mathematics of the problem, allows for the analytical
computation of Gaussian integrals for the elastic network models and the reduction of the
problem to a simple eigen-analysis problem of the Kirchhoff connectivity matrix. However
we know well that the actual protein energy landscape is much more complex, with many
local minima surrounding any global minimum, and that some of these minima originate in
the details of the side chain atoms. In the present case, we have not included these details in
our coarse-grained model. So, accounting for all details of the energy landscape and
dynamics will require those further details. Nonetheless these simple coarse-grained models
have advantages in filtering out some of the high frequency motions, which is both an
advantage and a disadvantage. The advantage is that the system behaves dynamically in a
simpler way, and the disadvantage is that all details cannot be seen in the computations.

Anharmonic potentials may be required that have more energy minima, and would need at
least a quartic function of the distance to obtain a more realistic potential energy function for
the elastic network models describing transitions between two states, but unfortunately that
leads immediately to a major complication in the mathematics of the problem, and its
becomes analytically insoluble. Another major limitation of the elastic network models is
their usual independence of the type of amino acids, whereas, it is well known that certain
single amino acid substitutions can have large effects on protein dynamics and allostery,
without significant changes to the protein structure. This problem has been addressed few
years ago by Erman [58], who assumed that the spring constants depend on the type of
amino acids. Future extensions of the elastic network models using mixed coarse-grained
models may bring a better explanation of the single amino acid substitution effects on
protein dynamics.”
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Prediction of loop motions with and without external environmental influences can lead to a
better understanding of the functions of loops and their mechanisms. More specifically, we
can potentially identify the mechanics of the hyper-variable loops of antibodies and how
they may move in response to the presence of a specific antigen. We can also try to
understand the mechanism of motions at the polymerase sites, the mechanism of GTP
binding sites in tubulin, and the loop at the active site in triose phosphate isomerase. For
instance in the introduction we referred to Keskin et al. who found that boundary regions of
collective motions seem to act as linkages in secondary structures elements. The loops of
tubulin act as these linkages, since they are dominated by low normal modes that move
loops with the whole domain. Our study also confirms the finding of Gerstein et al. (24) that
the whole protein consists of different shell regions of increasing mobility. Since most
protein residues’ motions are dominated by the lowest frequencies, this implies that the
protein residues form clusters of rigid bodies. Another important issue is in understanding
how the binding site of proteases open and close. We would like to answer the following
questions: What is the mechanism for this allosteric transition? What are the roles of loops,
and how do the structures of loops change during this and other transitions? Here we have
made a first computational step in this direction by demonstrating that the slow motions
control the loops that are most pertinent to the principle function. Our future computations
will focus on the dynamical behavior of loops under certain environmental conditions and
the transmission of any induced changes through the structure.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Impact of the motions of the first 6 normal modes on the overall motion, for all residues of
reverse transcriptase, tubulin, triosephosphate-isomerase and protease (myoglobin in
Supplemental Information G).
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Figure 2.
Mean correlations of the motions derived from the first six normal modes with the total
motions for each of the loops of reverse transcriptase and tubulin. The functional loops are
denoted by circles.
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Figure 3.
Mean RMSD for the loops of chain A and chain B of the reverse transcriptase and chain A
and chain B of tubulin. Functional loops are indicated by circles.
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Figure 4.
We highlight with thick cyan tubes the surface loops of HIV-1 reverse transcriptase that
have the highest average correlation (coefficient > 0.87) of motion between the first six
modes and all modes. Catalytic residues of the polymerase and RNase domains are labeled
and shown as spheres. Yellow molecular surfaces are shown for residues experimentally
determined to contact the nucleotide template. The other surface loops (see Methods) are
colored red with other loops in tan. (A) Zoomed and rotated to show the polymerase
catalytic domain with the fingers on the right and thumb on the left. (B) RNase catalytic
domain. (C) The P66 and P51 dimer is shown. The white arrow head points to the
polymerase finger domain which contains three cyan loops. The filled black arrow points to
a loop which is likely to interact with the nucleotide chain in the dominant modes of motion.
See Supplemental Information H for similar figures for the other four proteins.
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Figure 5.
Correlation Plot for first six normal modes for the functional and non-functional loops of
protease. The functional loops are marked in blue, while non-functional ones are shown in
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red color. We use green, white and black colors to show the transition from the highest
positive correlation (green) to anti-correlation (black). Numbers (1 to 18) indicate loop
indices for protease.
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Figure 6.
Percentage number of Functional Loops moving in correlation for five proteins under first
six normal modes.
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Table 1

The proteins used in this study

Name PDB ID State Residues # Loops

Tubulin 1TUB Heterodimer 867 36

HIV-1 reverse transcriptase 1DLO Heterodimer 971 47

Triosephosphate isomerase 1WYI Homodimer 496 20

Protease 1J71 Monomer 338 18

Myoglobin 2V1K Monomer 153 5
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