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ABSTRACT (max 250 words, need to contain the following categories) 

Background. Elastic Network Models (ENMs) are based on the simple idea that a 

protein can be described as a set of particles connected by springs, which can then be 

used to describe its intrinsic flexibility using, for example, normal mode analysis. 

Since the introduction of the first ENM by Monique Tirion in 1996, several variants at 

the coarse grained level have been proposed and their reliability for the description of 

proteins intrinsic dynamics demonstrated. Lately an increasing number of studies 

have focused on the meaning of slow dynamics for proteins function and its potential 

conservation through evolution, naturally leading to comparisons of the intrinsic 

dynamics of multiple protein structures with varying levels of similarity.  

Scope of Review. We describe computational strategies for calculating and 

comparing intrinsic dynamics of multiple proteins using elastic network models, as 

well as a selection of examples from the recent literature.  

Major Conclusions. The use of ENMs for comparative analysis of proteins dynamics 

has lead to greater understanding in the conservation of dynamics across structures 

with different conformations and within a proteins family. Moreover, there have been 

more and more evidence that comparing dynamics is a viable way for gaining greater 

understanding for the mechanisms employed by proteins for their function. Efforts 

have been made lately to evaluate the effect of the choice of similarity measures, the 

ENMs parameter and the structural alignments. The results of these studies, 

summarized in this manuscript will be useful for getting started on comparing the 

dynamics of proteins in a wide variety of settings. 

General Significance. Cf article Sarah? Protein design? 
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1. Introduction 
 

Folded proteins are remarkably dense, with a heterogeneously distributed density, 

which reflects the uneven distribution of interatomic forces in the protein. Their 

response to thermal forces is expected to proceed by preferably deforming the least 

compact regions while keeping the most compact ones rigid. Atoms tightly coupled 

on short time-scales are expected to remain tightly coupled on longer time-scales, at 

least between unfolding events. This suggests that estimates of the atomic density 

distribution within a folded protein can capture its collective degrees of freedom. It 

also motivates the extrapolation from analysis of intrinsic properties of the structure 

to collective motions occurring on for example the millisecond time-scale. Estimates 

of the atomic density distribution can also replace information about the exact 

chemistry involved in stabilizing the fold, similar to how the elastic response of 

macroscopic materials can be calculated without atomic detail.   

Likewise Elastic Network Models (ENMs) are based on the simple idea that a protein 

can be described as a set of particles connected by springs, which can then be used to 

describe its intrinsic flexibility using normal mode analysis (NMA). Monique Tirion 

pioneered the field in 1996, when she showed that a single-parameter potential could 

reproduce the slow dynamics obtained with a more complicated potential {Tirion, 

1996 #42}. This simplification makes the potential insensitive to the details of the 

equilibrium structure, which has minimal energy by construction. Models from 

experimental structure determination can thus be used directly, without the costly 

energy minimization associated with the use of chemical force fields. Tirion’s model 

has later been further simplified, in particular increasing its coarseness, such as in 

ENMs of interacting residues, rather than atoms {Hinsen, 1998 #2;Atilgan, 2001 #3}. 

ENMs provide a simple and interpretable description of the proteins collective motion, 

can be conveniently coarse grained, and are computationally inexpensive to calculate. 

For these reasons they rapidly have replaced molecular mechanics force fields that 

had been, since as early as 1977, used for NMA of proteins {Brooks, 1985 #7;Go, 

1983 #8;Levitt, 1985 #9;McCammon, 1977 #6;Noguti, 1982 #10;Brooks, 1983 #5}.  

The robustness of NMA with ENMs for the description of protein’s slow collective 

motions has almost come as a surprise to some. The motivation outlined above for 

using ENMs involved some brave assumptions, and it was not a priori obvious that 

Edvin Fuglebakk� 15/6/14 18:01
Comment [3]: Ref.	  Used	  Fisher	  2004	  
(Protein	  Science)	  in	  my	  thesis,	  might	  use	  
that.	  Kuntz & Kauzmann, 1974; Squire 
& Himmel, 1979 seem to be classical 
references, but I don’t have access to 
either. 
 
Nathalie Reuter� 15/6/14 18:01
Comment [4]: Use this? P. J. Fleming 
and F. M. Richards, “Protein packing: 
dependence on protein size, secondary 
structure and amino acid composition,” J. 
Mol. Biol., vol. 299, no. 2, pp. 487–498, 
Jun. 2000.	  



	   5	  

these assumptions were valid: the harmonic approximation used for investigating 

dynamics of large conformational changes and the absence of frictions such as those 

caused by the solvent. Yet early studies comparing NMA and experimental structural 

data, or molecular dynamics simulations did validate the use of NMA with coarse-

grained model. Validation against detailed molecular mechanics force fields on large 

protein datasets have shown that even coarser models than the one suggested by 

Tirion still reproduce the slow dynamics obtained from molecular simulations 

(e.g.{Pontiggia, 2007 #42;Rueda, 2007 #40;Skjaerven, 2010 #43;Yang, 2008 #41}). 

Furthermore, several studies have shown that in many cases a few low-frequency 

normal modes account for most of the structure difference between two 

conformational states {Marques, 1995 #960;Hinsen, 1999 #138;Tama, 2001 

#1040;Krebs, 2002 #926}. Conformational changes can be described by just a few 

low-frequency normal modes intimately linked to the structure indicating that proteins 

systematically make use of these low energy modes to achieve their function. The 

importance of these modes for proteins function has naturally led to the question of 

the evolutionary conservation of proteins slow dynamics, in analogy to structure and 

sequence. 

In a comprehensive review article published in 2013, Cristian Micheletti summarizes 

the developments and applications of methods for comparing proteins internal 

dynamics{Micheletti, 2013 #44}.  Examples of comparative dynamics analysis 

include studying a set of proteins that represent various functional states of a given 

enzyme upon e.g. ligand-binding {Seckler, 2013 #91; Rodgers, 2013 #57}, evaluating 

the conservation of dynamics within a homologous protein family{Kolan, 2014 

#119;Laberge, 2007 #70;Lukman, 2009 #79;Maguid, 2005 #17;Marcos, 2011 

#97;Raimondi, 2010 #23;Velazquez-Muriel, 2009 #22}, or within a set of proteins 

that possess the same fold despite low sequence identity{Zheng, 2003 #105;Hollup, 

2011 #122}. It has been shown, when comparing structures of homologous proteins 

and their intrinsic dynamics, that protein structures evolve along the low frequency 

modes. A number of studies have shown that the low frequency modes are robust to 

sequence variations {Nicolay, 2006 #16;Tama, 2006 #110;Echave, 2010 #25;Hollup, 

2011 #122; Yang, 2008 #51;Zheng, 2007 #43;Zheng, 2006 #54}.  The use of ENMs 

for comparative protein dynamics has the potential to teach us more on a wide range 

of topics. To name a few, these can be about the effects of ligand binding, whether in 
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an active site or an allosteric site, changes in oligomeric state, changes in sequence 

through evolution, and the level of similarity in dynamics between functionally 

similar enzymes. 

Together with the question of the evolutionary conservation of internal dynamics has 

come the need to reliably compare computed dynamics for a set of protein structures. 

Due to the scarcity of experimental data on protein dynamics, molecular modeling at 

large is an attractive alternative that has earlier demonstrated its predictive power 

through numerous applications. ENMs are a model of choice for such studies, even if 

computing power has admittedly become more affordable than it was at the advent of 

ENMs and molecular dynamics simulations on microseconds time-scale are becoming 

increasingly accessible to the research community. The tractability and simplicity of 

ENMs is unparalleled by molecular mechanics force fields and ENMs defined with 

transferrable parameters can be easily applied to large numbers of protein structures 

in automated ways. Beyond the choice of the ENM and its parameterization, 

comparing internal dynamics of a set of several protein structures comes with a set of 

methodological choices, which are not obvious, but can significantly affect the 

outcome of the comparative dynamics analysis. After an introduction to the formalism 

of ENMs and their parameterization, we focus on aspects that are directly relevant for 

comparative analysis of multiple protein structures such as the similarity measures 

used to compare computed dynamics, the influence of the alignment methods and 

how to include the influence of those regions of the structures that are not similar in 

sequence or conserved into the comparison. Next, using selected examples, we 

describe how comparing proteins intrinsic dynamics can be successfully used to 

understand conformational changes upon ligand binding, functional oligomerisation 

states and the role of intrinsic dynamics for proteins function. Finally we list some of 

the most commonly used software and libraries for ENM calculations. 
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2. Elastic Network Models 

2.1.  Formalism 
 

Since Tirion’s contribution {Tirion, 1996 #1}, further simplifications of the ENMs 

have been made. Upon realising that a good density estimate can be made even 

without atomic detail and that backbone motion can be largely decoupled from side-

chain movement, Hinsen et al. {Hinsen, 1998 #2} introduced a model with non-

uniform distance dependent force-constants, connecting only Cα atoms. Atilgan et al. 

{Atilgan, 2001 #3} also applied Tirion’s model at the Cα granularity. Another 

popular density based model has been the early Gaussian Network Model (GNM) 

{Bahar, 1997 #4}. While obtaining density estimates in a way similar to Atilgan et al., 

this model does not employ a Hookean potential. The interpretation of GNMs is 

therefore different from the ENMs. 

Since the initial ENMs, many variants have been proposed. More detailed 

descriptions of the local backbone configurations have been investigated, such as 

parameters dependent on the secondary structure of the backbone {Moritsugu, 2007 

#5;Moritsugu, 2009 #6}, reintroduction of chemical bond information {Jeong, 2006 

#112}{Kim, 2013 #52} as well as modeling of side-chain locations {Micheletti, 2004 

#7}. On the other hand, simplification to fewer coordinates has been proposed, both 

in terms of simpler coordinate systems {Mendez, 2010 #8}{Wako, 2011 #50} and 

less granular representation of the proteins {Tama, 2000 #51}. Despite all this variety 

the ENMs can be understood in terms of a single unifying formalism, which will be 

detailed in the following. 

The ENMs model the protein as a network of Hookean springs connecting all residues, 

which are typically represented by nodes located at the center of their Cα atom. In a 

typical model, interactions between atoms are described by the pair potential: 

       [1] 

where ri is the position of a residue i, in a configuration of the protein r, the 

superscript 0 denotes the equilibrium conformation and kij is the force constant for the 

spring connecting residues i and j. Here kij is typically determined by a scalar function 

of distance between connected nodes. Apart from the choice of granularity of the 

Vij(r) =
kij

2

�
||ri � rj ||�

����r0i � r0j
�����2
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model, the function for determining kij is the most important difference between 

different ENMs. The potential energy of the entire network is the sum of this pair 

potential over all pairs: 

        [2] 

where N is the number of nodes in the network. Expanding this potential as a Taylor 

series around r0 reveals the following form of the potential: 

      [3] 

with H the matrix of partial second order derivatives of the potential. With respect to 

Cartesian coordinates this is a 3N × 3N matrix. The elements of H can be specified in 

terms of 3 × 3 submatrices corresponding to each pair of nodes: 

      [4] 

Since H is a symmetric matrix, the potential energy of a configuration r can be written 

in terms of its eigendecomposition: 

       [5] 

Where vm represents the normalized eigenvectors and λm the corresponding 

eigenvalues of H. These eigenvectors form an orthogonal basis for the configurational 

space of the protein so that they each provide energetically independent contributions 

to the potential energy of r. For infinitesimal displacements from r0, it is justified to 

interpret these contributions as decoupled components of the displacement, with λm 

quantifying the energy of deforming the network in the direction of vm. These 

independent modes of deformation are referred to as the normal modes of the network. 

Since rigid-body rotations and translations of the network are not restrained, the six 

modes corresponding to rigid-body motion in Cartesian coordinates will have zero 

energy. The modes describing rigid body displacements are referred to as trivial 

modes.  

Since normal mode analysis has a long tradition in chemistry for analyzing small 

vibrational molecules, the above formalism is often presented as an 

V (r) =
PN

i=1

PN
j=i+1 Vij(r)

V (r) = 1
2

�
r� r0

�T
H

�
r� r0

�

Hij =

(
� kij

||r0i�r0j ||2
�
r0i � r0j

� �
r0i � r0j

�T
, i 6= j

P
l 6=i Hil , i = j

V (r) =
P3N

m=1 �m

⇣�
r� r0

�T
vm

⌘2
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eigendecomposition of the mass weighted Hessian. In that case, the elastic network is 

considered a coupled harmonic oscillator and the eigenvalues are the squared 

frequencies of vibration along the corresponding modes. While the vibrational normal 

modes are a perfectly valid decomposition of motion, it is worth stressing that 

solvated proteins cannot in general be expected to be vibrational along their lower 

energy modes {Hinsen, 2008 #34} and thus, requires cautious interpretation of the 

oscillator model. 

For equally normalized displacements, the quadratic dependence of energy on the 

spatial extent of deformations causes large local deformations to be more 

energetically expensive than collective motions that involve only small changes to 

each spring. Therefore low energy modes are expected to be collective. By a similar 

reasoning, collective motions can be expected to have larger amplitudes, as local 

deformations are constrained by the stronger local interactions. In fact, for a harmonic 

potential, the displacements along low-energy normal modes are exactly the 

deviations along high-variance principal components. The Boltzmann distribution for 

the potential given in Eq. [3] is a multivariate Gaussian distribution with a covariance 

matrix proportional to the inverse of H. Because of the zero energy associated with 

rigid movement of the protein, this inverse is not defined, but the Moore-Penrose 

pseudo-inverse can for many applications be regarded as a covariance matrix of 

internal deformations: 

         [6] 

where the sum excludes the nontrivial modes. This implies that the eigenvectors vm 

can be regarded as the principal components of this covariance matrix C, with 

variance 1/λm . The covariance along each of the Cartesian coordinates of a pair of 

nodes i and j is proportional to Cij, which denotes a 3 × 3 matrix. The trace of the 

submatrices Cii is proportional to the mean squared thermal fluctuation of node i: 

       [7] 

where the angular brackets denote the expected value and tr denotes the trace, or 

diagonal sum, of the matrix. To obtain a scalar quantification of the correlation of two 

nodes, a correlation matrix is commonly calculated, following Ichiye and Karplus 

{Ichiye, 1991 #9}: 

C =
P3N

m=7
1

�m
vmvT

m

h||ri � r0i ||2i = tr (Cii) =
P3N

m=7
1

�m
vT
mvm
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         [8] 

Here the numerator is proportional to the expected inner product of displacement, 

which depends on both the magnitudes and the angles between node displacements, 

whenever i ≠ j. 

As mentioned above, the inner product in Eq. [5] quantifies the contribution of a 

mode to an infinitesimal displacement. As a means to identify a few normal modes 

that approximate the displacement well, the squared overlap and related measures are 

commonly calculated {Marques, 1995 #686; Hinsen, 2000 #1255}. The squared 

overlap Om, of a normalized displacement vector d and a normal mode vm is the 

squared inner product: 

         [9] 

with 

        [10] 

since the normal modes are orthonormal. Such approaches are often applied even 

when the displacements analysed are not strictly infinitesimal, and they have been 

important in validating the ENMs. 

2.2. Parameterization: force constants and cut-offs 
	  

Apart from the choice of granularity and coordinate system used to represent the 

protein as an elastic network, the different ENMs proposed over the years mainly 

differ in how the force constants are determined (The function determining kij in Eq. 

[1]).  While this function is commonly chosen to be a function of interatomic distance 

in the equilibrium conformation, model developers have not reached a consensus on 

which mathematical formalism is more appropriate, or which benchmarking standards 

should be used. While different choices of mathematical formalisms can be brought to 

close agreement through careful parameterization {Leioatts, 2012 #10}, it is 

important to choose appropriate benchmarks to parameterize against. 

The parameterization of ENMs was initially motivated by comparison to detailed 

chemical potentials {Tirion, 1996 #1;Hinsen, 1998 #2} analysis of MD-trajectories 

Pij =
tr(Cij)

(tr(Cii)tr(Cjj))
1
2

Om(d) =
�
dTvm

�2

P3N
m=1 Om(d) = 1
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{Hinsen, 2000 #35} and radial distribution analysis of the coordination between 

residues in the protein core {Atilgan, 2001 #3}. Taking advantage of the vast amount 

of structural data available, it has also become custom to parameterize model 

predictions against crystallographic B-factors and ensemble variation in NMR models. 

This practice does not come without assumptions, however, as neither of these are 

direct observations of thermal motion, and in the case of B-factors the experimental 

conditions do not reflect the solvent environment for which one would usually want 

the model to apply. Indeed the parameterization against B-factors tends to make long-

range contacts stiffer than models obtained from MD-simulations and radial 

distribution analysis {Fuglebakk, 2013 #15}. Notably a wide range of cut-off values 

(from 8 to 15 angstroms) have been used in cut-off based models to represent the 

interatomic interactions. Some models are sensitive to these values, but their 

implications on interpretation are largely left neglected. In recent years attempts have 

therefore been made to more carefully quantify how these assumptions affect the 

parameterization {Riccardi, 2010 #11;Hinsen, 2008 #12;Soheilifard, 2008 

#13;Fuglebakk, 2013 #15}. As these benchmarking studies show that the performance 

of different ENMs depend on the benchmark chosen, researchers should carefully 

consider which benchmark they trust for their application, and choose or define their 

model accordingly. ENMs can also be modeled to reflect a crystalline environment 

{Kundu, 2002 #580}, and parameterizations obtained for such models can potentially 

help in parameterizing single protein ENMs. Even so, exact interpretation should be 

made cautiously, as B-factors are heavily influenced by non-thermal contributions 

{Hinsen, 2008 #12;Soheilifard, 2008 #13}.  

 

3. Validation 

 
Early studies comparing NMA and experimental structural data, or molecular 

dynamics simulations (e.g. {Pontiggia, 2007 #978}), did validate the use of NMA 

with coarse-grained model. Validation against detailed molecular mechanics force 

fields have shown on large protein datasets that ENMs reproduce well the slow 

dynamics obtained from molecular simulations (e.g.{Micheletti, 2004 #7; Pontiggia, 

2007 #42;Rueda, 2007 #14; Moritsugu, 2007 #5; Yang, 2008 #41; Moritsugu, 2008 

#1830;Moritsugu, 2009 #6; Skjaerven, 2011 #53; Fuglebakk, 2013 #15}). 
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Further several studies have focused on validation against experimental data; they 

evaluated the number of low-energy modes necessary to describe the structural 

difference between two different x-ray structures (say one opened and one closed) of 

the same protein using the overlap between the calculated set of modes and the 

structure difference vector as a quality measure. These studies show that in many 

cases a few low-frequency normal modes account for most of the structure difference 

(in term of difference vector) {Marques, 1995 #960;Hinsen, 1999 #138;Tama, 2001 

#1040;Krebs, 2002 #926}. Hinsen et al. {Hinsen, 1999 #36} compared domain 

identifications from an ENM with those obtained from internal distance differences in 

experimentally determined conformations of Citrate Synthase, HIV-1 Reverse 

Transcriptase and Aspartate Transcarbamylase. Sanejouand and coworkers 

systematically analyzed the agreement between low energy normal modes and small 

data sets of experimentally determined structures in different conformational states 

{Tama, 2001 #37;Delarue, 2002 #38}. Krebs et al. showed that more than half of a set 

of 3800 protein motions could be described by only two of the lowest frequency 

normal modes {Krebs, 2002 #926}.  Utilizing the large number of structures 

determined for some proteins, the structural variation can be decomposed into 

principal components and compared with normal modes, as done by for example 

Bakan and Bahar {Bakan, 2009 #39}. In all of these studies the conformational 

changes of the proteins were found to be well described by the lower energy normal 

modes intimately linked to the protein’s structure. 

In addition ENMs have been used as a tool for characterization in many case studies 

of proteins and macromolecular complexes. In many such studies the normal mode 

analysis is validated by comparing with conformational change, or by testing the 

insights obtained by independent means {Valadie, 2003 #40;Tama, 2003 #41;Reuter, 

2003 #42;Zheng, 2007 #43}. Comparison of predictions from ENMs with Molecular 

Dynamics simulations has also been used to validate and benchmark models 

{Micheletti, 2004 #7;Rueda, 2007 #14;Fuglebakk, 2013 #15;Moritsugu, 2007 

#5;Moritsugu, 2008 #1830;Moritsugu, 2009 #6}. 
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4. Comparing intrinsic dynamics: getting quantitative 
Comparisons of principal modes of motion have been done fruitfully by manual 

inspection and expert judgement comparing calculated properties. At the same time, 

recent years have seen progress on ways to more quantitatively assess the similarity of 

motion. This is particularly useful for large-scale statistical analysis, benchmarking 

and clustering.  

4.1. Similarity measures 

ENMs can predict atomic fluctuation through Eq. [7], and such fluctuation profiles 

can be compared to fluctuations obtained from other structures or models by an 

appropriate association measure, such as the squared inner product, SIP: 

 

where a and b are vectors of size N with elements quantifying the atomic fluctuation 

of each atom in the model. Correlations measures have also been commonly applied. 

As mentioned above, motions calculated from ENMs are only valid for infinitesimal 

displacement from equilibrium, and the inference to large deformations involves 

assuming that the interatomic couplings are relevant for longer timescales. It is 

therefore preferable to compare the normal modes or the covariance matrices of the 

ENMs, rather than atomic fluctuations, which only indirectly reflect the covariance 

structure of the protein. This concern does indeed have practical implications as we 

reported recently {Fuglebakk, 2012 #28;Fuglebakk, 2013 #15}. For comparing sets of 

normal modes, the Root Mean Squared Inner Product (RMSIP) of the lowest modes 

has served the community well for a long time: 

     [11] 

where V and W are sets of normal modes or principal components, and the sum runs 

over the nontrivial modes of lowest energy or highest variance. The constant n defines, 

somewhat arbitrary, a subspace of protein motion that are considered accessible by 

low-energy motion. The RMSIP quantifies how similar the directions of this low-

energy subspace are for two protein models. Since the modes are orthogonal, the 

RMSIP would we exactly 1 if the summation was extended to the entire set of modes. 

Typically, this measure has been applied with n=10, following Amadei et al. {Amadei, 

SIP(a,b) =
(
PN

i=1 aibi)2

(
PN

i=1 a2
i )(

PN
i=1 b2i )

=
⇣

aTb
||a|| ||b||

⌘2

RMSIP(V,W) =
⇣

1
n

Pn
m=1

Pn
l=1

�
vT
mwl

�2⌘ 1
2
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1999 #29}. As the RMSIP does not represent the energetic separation between modes 

in the sets, measures that incorporate eigenvalues as well has been proposed. Hess 

{Hess, 2002 #30} defined an overlap function, OV: 

      [12] 

where A and B are covariance matrices and A1/2 is the matrix that decomposes into 

the same orthonormal eigenvectors as A, but with eigenvalues the square root of those 

of A. An alternate form reveals the similarity with the RMSIP: 

    [13] 

where A is decomposed into eigenvectors vm and eigenvalues  κm, B into eigenvector 

wl and μl and the sums run over the nontrivial modes. Note that the numerator has the 

form of an RMSIP weighted by the eigenvalues, and that it is equal to the 

denominator for identical sets of eigenvectors and eigenvalues. 

Considering the problem of comparing the intrinsic deformations in proteins as a 

matter of comparing their Boltzmann distribution, the literature of multivariate 

statistics provides many measures of distance or similarity. Of those, the 

Bhattacharyya coefficient and the closely related Bhattacharyya distance has been 

adapted for comparing internal deformations of the kind that can be obtained from 

ENMs{Fuglebakk, 2012 #28}. The Bhattacharyya coefficient, BC is defined as: 

       [14] 

where pa and pb denote probability density functions for a multivariate random 

variable. For comparing internal deformations of proteins, the distributions can be 

taken to be mean-centered, and for ENMs the probability density functions will be 

Gaussian with the covariance matrix specified in Eq. [6]. For mean-centered Gaussian 

distributions, BC has the closed form: 
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where A is the covariance matrix of pa and B is the covariance matrix if pb, and 

vertical bars denote the matrix determinant. However, the measure is only defined for 

positive-definite covariance matrices, and an approximation to A and B has to be 

made due to the presence of the trivial modes. This has been solved by projecting the 

matrices to a lower dimensional subspace chosen from the eigendecomposition of the 

mean matrix in the denominator {Fuglebakk, 2012 #28}{Fuglebakk, 2013 #15}. 

The information used by the different measures is illustrated in Figure X. These 

simple bivariate distributions can be taken to represent positions of a particle moving 

in a plane. The SIP ignores any directionality of motion, and simply adds up the total 

variance of position. The RMSIP considers the agreement of direction for all pairs of 

eigenvectors that ranks among the n highest principal components (corresponding to 

lower energy normal modes). For this simplified example only an RMSIP with n=1 

can be considered, which amounts to only comparing the most principal component of 

each distribution. Note that comparisons with the other principal component of either 

distribution are represented with dotted lines for comparison with the OV. The OV 

compares all pairs of eigenvectors, but factors in the variance along each direction. 

This is illustrated by vectors with length proportional to the standard deviation along 

the principal directions, and can be contrasted with the normalized vectors considered 

by the RMSIP. The BC quantifies the similarity of the probability density functions, 

which is here illustrated by the overlapping region of the two elliptical distributions. 

4.2. Structural alignment 

When the intrinsic motions of non-identical structures are compared, it is necessary to 

first obtain a description of which parts of the different structures are to be compared 

with each other. For example, a structural alignment can describe which amino acid 

residues are in structural correspondence to each other between two or more 

structures. Comparing distant homologues provides a challenge in defining what parts 

of the proteins to compare. This is commonly solved by structural alignment, which is 

a challenging problem, particularly for the simultaneous alignment of sets of proteins.  

When considering an alignment for comparing multiple structures, sequence identity 

and volumetric differences tend to pose a big challenge to finding equivalent atomic 

coordinates between them. The optimum solution between two structures, let alone 

many, tends to scale with sequence length and variability. Moreover, there is also the 
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question of the most reasonable way of assessing a resulting solution, even though 

RMSD is generally accepted as the standard across different tools within the field. 

Due to the dynamic nature of structures, many alignment solutions involve a 

component of flexibility to achieve a better fit between structures. Yet these solutions 

are mostly available for pair-wise alignments. Most multiple structural alignment 

methods involve computing all pair-wise alignments between a set of structures, 

before producing a consensus between all of them{Marti-Renom, 2009 #103}. The 

differences between multiple structure alignment programmes involve the choice of 

geometric reference points, such as secondary structure or Cα atoms, algorithm for 

aligning them in a pairwise fashion or identifying a consensus core alignment to 

optimise iteratively, and the way these are scored at the end. Problems unique to 

multiple structure alignment involve the length of consensus alignment between 

multiple structures, and pairwise RMSDs within the set {Ma, 2014 #104}. We find 

that in order to compare structures effectively, it is essential to have a robust 

alignment that is able to take into account natural and yet unique variations within a 

set of proteins. Previously, we have found that the results of comparative analysis are 

sensitive to the quality of the alignment, especially if the set contains structures that 

are related at the SCOP family and superfamily levels{Murzin, 1995 #105}.   

To illustrate this, we constructed multiple sequence alignments for a SCOP 

superfamily of triosephosphate isomerase proteins using two popular programmes, 

STAMP{Russell, 1992 #106} and MUSTANG{Konagurthu, 2006 #107}. The 

triosephosphate isomerase possesses a fold that is tricky to align, as it is completely 

symmetrical in its enclosed barrel-like configuration that consists of 8 strands and 8 

helices. As such, it is a challenge for even the most sophisticated algorithms to align, 

especially when the sequence identity is low, due to the abundance and diversity of 

this fold{Nagano, 2002 #112}. Visual inspection of the superimpositions provided by 

STAMP shows that it is heavily biased towards the N-terminus, where the alignment 

is optimized, losing symmetry in the points of common reference towards the C-

terminus (Figure 1). On the other hand, the MUSTANG alignment is able to provide a 

superimposition that is sparser, with regards to these points in common, but these are 

distributed all over the structures (Figure 2).  

STAMP{Russell, 1992 #106} relies on an algorithm that assesses pairwise alignments 

within a set of protein and extends it in a progressive manner with the aid of 
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hierarchical clustering. In this process, there is a chance that an error made in 

introducing a gap earlier is propagated to the final output. MUSTANG{Konagurthu, 

2006 #107} employs a similar algorithm that differs in the way that it refines the 

alignment once the pairwise alignments are completed by introducing an intermediate 

step where the residue position equivalences are assessed globally (in the context of 

the other proteins in the set). 

The effect of the difference in quality between these alignments propagates when we 

try to cluster these structures to their family and superfamily levels based on their 

intrinsic dynamics, using the Bhattacharya coefficient scoring{Fuglebakk, 2012 #28}. 

The difference is striking: we see some separation between the structures at the family 

and superfamily level which is not totally identical to the SCOP annotation, but 

performs better than fairly mixed clustering that we see resulting from STAMP. Since 

we find a large overlap between structural similarity and dynamics in most cases, we 

find that using an appropriate tool to align multiple structures is important in having 

reliable results when comparing their intrinsic dynamics.  

A thorough discussion about defining comparable regions of a protein and on some 

strategies for aligning proteins using models of their intrinsic flexibility is described 

in a review of Micheletti {Micheletti, 2012 #31}. 

4.3. Comparing only the conserved regions 

Once the issue of determining the corresponding parts of each protein within a set is 

resolved, we can proceed to define a subset or a core between all of these proteins that 

can be compared dynamically. In such a procedure, each protein can be partitioned 

into a subset of core atoms A, and a subset of excluded peripheral atoms B. While 

only A has a corresponding part in all the structures compared, B is still linked to the 

dynamics of A and should be retained in the calculation of motion to preserve its 

influence. This needs to be observed when measures are normalized. In the case of 

comparing normal modes or covariance matrices, lower dimensional matrices 

describing the motion of only A needs to be obtained. Many deformations of the 

proteins can be consistent with A acting as a rigid body, while B is seen to deform 

internally. Since B is defined to not be comparable between structures, it is desirable 

to express the internal deformations of A in a way that is consistent with how it 

deforms in the context provided by B. Mathematically, the problem is manifested by 
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the fact that the parts of the eigenvectors corresponding to only A is not generally 

orthogonal. One common way to deal with this problem is to define a potential for A, 

which is restrained by the presence of B {Hinsen, 2000 #35;Carnevale, 2007 #33}. 

Assuming that B deforms along the direction of minimal energy, such a restrained 

potential can be obtained by differentiating Eq. [3] with respect to deformations of B. 

Substituting these minimal energy deformations of B back into Eq. [3] gives the 

Hessian of the constrained potential: 

   [15] 

where the Hessian of the full potential is partitioned so that Haa reflect interactions in 

A, Hab reflect interactions between A and B, and Hbb reflect interactions in B. This 

method was originally introduced for ENMs, but now has also been extended to all-

atom and hybrid quantum mechanics/molecular mechanics potentials, for its 

recognized potential as an analysis method{Woodcock, 2008 #95}. 

When normal modes or covariance matrices are expressed in rotational variant 

coordinate systems, like the formalism in Cartesian coordinates described above, one 

needs to make sure that they are expressed in a comparable frame of reference. When 

comparing models of identical proteins a comparable reference frame can be obtained 

by simply rotating the protein prior to calculation. In cases where different proteins 

are compared, an approximation to a common reference frame is typically obtained by 

roto-translating to minimize the sum of squared distances between aligned residues. 

For comparing proteins with very different equilibrium structures, the validity of such 

an approximation to a common reference frame might become a concern. Possible 

solutions include considering internal coordinates {Mendez, 2010 #8} or comparing 

rotationally invariant properties of the normal modes, like the correlation matrix in Eq. 

[8]. 

5. Strategies and Applications of Comparative Analysis 

Comparing multiple structures has long been a natural extension to the study of 

intrinsic dynamics. In the case of ENMs, where it is computationally efficient and 

inexpensive, it’s been seen as a logical choice for analysis of large sets of structures in 

many ways. The modes vectors produces from ENMs are informative on their own, 

and provide a good qualitative description of a protein’s inherent flexibility. Luo and 

Bruice did one example of such a qualitative analysis, where they conducted a visual 

H̃ = Haa �HabH
�1
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inspection of the normal modes vectors on six structures in the dihydrofolate 

reductase kinetic pathway {Luo, 2009 #155}. With this analysis, they focussed on the 

regions (such as the M20 loop and sub domain rotations) that were seen to undergo 

conformational changes during catalysis, and found that they were consistent with the 

principle motions from the low-frequency modes, and were able to further validate 

these findings against NMR, kinetic and molecular dynamics studies found in 

literature.  

In general, we find that such analyses benefit from quantification of modes properties, 

and here, we outline a selected list of examples where ENMs have been used to 

compare the dynamics of multiple structures, whether from the same sequence or not, 

related by homology or fold. In most of the examples, fluctuation profiles (RMSF) 

were used to compare between structures and against experimental B-factors, while 

the use of the overlap analysis was also very common. In addition, we find that 

comparing covariance/correlation matrices, using similarity measures (such as the 

RMSIP) and perturbation response methods are also useful techniques when 

comparing dynamics.  

5.1 Comparing multiple structures of the same protein sequence: 

conformational changes 
The overlap between modes and the structural difference from one conformation to 

another has been introduced as a way to understand the transformation between two 

states of an enzyme. This analysis allows for the identification of modes that 

contribute to the conformational change seen {Marques, 1995 #49;Tama, 2001 #37; 

Reuter, 2003 #42}. The finding that the lowest frequency modes are often the ones 

that are functionally relevant supports this kind of analysis. Traditional dynamics 

studies that compare two extreme states, e.g. fully open ligand-free conformations vs. 

fully closed ligand-bound conformations, lead to interpretations that the modes 

sampled in the transition of these two states are the ones important for conformational 

change. Even so, the method has been useful in understanding the changes in 

flexibility between states. Extending pair-wise comparisons can come in the form of 

performing serialised overlaps between multiple pairs of structures of different 

conformational intermediates, or a large-scale survey of transitions. An example of a 

large-scale survey of transitions, Stein and colleagues performed serial overlap 

analyses of pairs unbound to bound conformations (multiple pairs in some cases, 
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where more than one ligand-bound conformation was available for an enzyme) from a 

total of over 12,000 structures {Stein, 2011 #156}. This was one of the analyses used 

to assess the cost of conformational change upon ligand binding, and whether they fit 

the lock-key, induced-fit or conformational selection binding models. In general, 

mapping conformation transition points are a much more complex affair that require 

more detailed and rigorous calculations than the overlap analysis to estimate 

{Maragakis, 2005 #118;Whitford, 2008 #90;Togashi, 2010 #100}. 

ENMs can be used to produce covariance matrices that can be compared between 

them to understand the difference in dynamics for different states. The work of 

Seckler et al.{Seckler, 2013 #83} is one such example, where the authors use ENMs 

in addition to structural comparison; the authors retrieved 52 structures of HIV-1 

reverse transcriptase, and compared them to reference structures using a measure of 

dynamics similarity called the covariance complement. The structures differed in state 

such that some were ligand-free while others had DNA, RNA, adenosine triphosphate 

(ATP) and various inhibitors bound.  Further they found linear variation of RMSD 

with the covariance complement to be a signature of functional commonality, and 

showed that the ratio between the two measures can be used to cluster these 52 

structures into three main levels. These levels corresponded to their level of activity 

based on the ligand-types. This is an example where dynamics is used to distinguish 

between the effects of ligands 

Allosteric effects of ligands and their ability to cause changes in flexibility have often 

been explored using ENMs {Tehver, 2009 #58;Motlagh, 2014 #77}. While the 

allosteric effect is commonly known to cause a large conformational change in a 

structure, Rodgers et al. explored the hypothesis that the low-frequency normal modes 

are able to propagate allosteric signals without causing one in a family of transcription 

factors called CRP/FNR {Rodgers, 2013 #57}. They constructed ENMs for structures 

of Catabolite Activator Protein (CAP) from Escherichia coli representing unliganded, 

single and double-liganded forms and introduced mutations outside the substrate-

binding pocket by varying the spring constants attached to a single residue. This was a 

strategy for probing changes to the free energy of substrate binding. They found that 

the regions that experienced the greatest change in cooperativity were not necessarily 

adjacent to the substrate-binding site. They used their method to predict residues 
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involved in allosteric signalling in CAP validated their findings on a homologue GlxR, 

through a combination of ENM, MD and experimental results.  

The large increase in the number of X-ray structures has led to the opportunity of 

analysing preferred conformations with multivariate statistical analyses such as 

Principle Component Analysis (PCA). PCA has the advantage of reducing the 

dimensionality of large-scale data into basis vectors (or principle components), 

ordered based on the level of variance they describe. Here we focus on using PCA not 

to reduce the dimensionality of molecular dynamics trajectories to gain collective 

modes analogous to normal modes, but as a means to reduce information from 

multiple structures. One strategy employing PCA involves calculating principle 

components for a large collection of structures for a given protein, and comparing the 

resulting principle components to modes obtained from ENM calculations on 

representative structures. Katebi et al. applied this strategy to triosephosphate 

isomerase (TIM) and could relate the variation in the structural space to intrinsic 

dynamics and further to function {Katebi, 2014 #52}. Yang and colleagues have 

shown that normal modes can directly be compared with principle components 

extracted from a large set of structures from HIV-1 protease, providing a direct 

comparison of calculated values to experimental data {Yang, 2008 #51}. 

 5.2 Comparing dynamics between different oligomeric states 

The variations in the dynamics of monomers often translate to changes in global 

structure, whether they are perturbed by mutations or ligands. As a recommendation, 

when comparing oligomeric structures, one should be wary of the effect of calculating 

the modes in different oligomeric states before drawing conclusion on the dynamics 

of the system or making a one-to-one comparison. The lowest modes are different 

from one oligomeric state to the other, where subunit-subunit motions make up the 

lowest frequency modes in multimeric assemblies. Eigenvectors calculated on entire 

structures with different oligomeric states are thus not comparable. Since monomers 

usually possess differences in conformation based on their oligomeric state, 

comparing monomers extracted from different states provides sufficient basis for 

observing changes in their dynamics{Marcos, 2011 #97}.  

Another notable example of working with multiple subunits is in the study of 

Alzheimers’ Aß(1-40) amyloid fibrils, where Xu and colleagues constructed models 
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of these protein assemblies based on two forms of naturally occurring symmetries and 

varying lengths of the fibrils{Xu, 2010 #59}. They were able to characterise the 

effects of the fibril size on the overall flexibility of these large structures, and the 

changes to the low-frequency motions. Similarly, Polles et al explored the flexibility 

in different assemblies of heterogenous set of virus capsids based on fluctuations-

based analyses and domain decomposition {Polles, 2013 #137}. Other studies 

dedicated to the comparison of dynamics to changes in oligomeric state have been 

reported for monomeric, dimeric and tetrameric states of GPCRs {Niv, 2008 #115}, 

dimeric and hexameric (trimer-of-dimer) states of the serine receptor Tsr{Hall, 2012 

#111}, and monomeric and dimeric states of the p53 protein{Kantarci, 2006 #109}. 

 5.3 Comparing dynamics in more distantly related proteins  
Structure comparison has been long established as a means to understanding the 

evolution of proteins, as is the link between sequence and structure since the work of 

Lesk and Chothia {Chothia, 1986 #110}. In many cases, even from visual inspection, 

a structure is not just seen to encode dynamic information, but also a historical time-

point in the evolution of the family to with it belongs. Some sequence mutations, 

insertions and deletions can be accommodated by the plastic deformations of a 

common architectural core and retain the precise geometry of the active site, even if 

peripheral regions or accessory domains vary {Hasegawa, 2009 #118}. Since proper 

folding of the protein is a requirement for function in many cases, it is natural to seek 

to understand how the fold affects function, and their principal modes of motion is an 

important ingredient in understanding functional properties of the fold.   

The observation that low energy normal modes so frequently appear in functional 

motion {Krebs, 2002 #92;Nicolay, 2006 #16} has motivated investigations into their 

evolutionary conservation across protein families. The globins have served as a good 

example of a well conserved yet diverged group of proteins and has been a subject of 

quantitative comparisons by Maguid and colleagues {Maguid, 2005 #17}. They 

developed a method to quantify similarities between the collective modes using a 

singular value decomposition approach to find representative vectors of an aligned 

core of structures. This work lay the foundation for exploring the evolutionary 

conservation of dynamics in the lowest frequency modes which they further 

developed and validated across larger standard datasets from the family to 

superfamily levels {Maguid, 2006 #18;Maguid, 2008 #19}.  
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In 2006, Carnevale et al {Carnevale, 2007 #33} introduced the idea of performing 

pair-wise alignments and comparing dynamics for the regions conserved by giving 

each pair an overall score such as RMSIP, which they used on pairs of proteases with 

very low sequence identity. Partial pair-wise alignments between the proteases 

allowed them to conclude that often the dynamical conservation far exceeded the 

structural conservation. The overlap between normal modes and evolutionary space 

was further explored by others {Leo-Macias, 2005 #20;Leo-Macias, 2005 

#21;Velazquez-Muriel, 2009 #22;Raimondi, 2010 #23}.  

In a more recent study combining allostery and evolutionary conservation, Kolan et al. 

report the role of the lowest frequency modes on the mechanical motions and 

conformational changes of six members of the GPCR family {Kolan, 2014 #119}. 

When comparing between the ligand-bound and ligand-free states, they found that the 

slowest modes are well suited to describe components of the activation mechanism. 

They compared the overlap of their slowest modes by calculating the normalized 

mean squared displacements of the aligned Cα atoms as a correlation score and 

showed that all the GPCR members except rhodopsin agree well, and concluded that 

rhodopsin was not representative of all GPCRs in its motions. They concluded that 

the ENM calculations were able to capture the long-range mechanism of GPCR 

activation, where binding in the extracellular domain can cause a conformational 

change in the cytoplasmic domain. 

Another example of linking the conservation of certain structural/sequence motifs to 

function is displayed by the work of Lukman and Grant (2009). They surveyed 

maltose transporters and characterised a network of residues that have an influence on 

the overall dynamics of the proteins in different conformational states. This work is 

an example of analysis inspired by the developments in the perturbation-response 

analysis by{Zheng, 2005 #55}, who had earlier studied the conservation of dynamics 

in distantly-related motor proteins by comparing the conformational changes 

experienced by myosin, F1-F0 ATPase and kinesin {Zheng, 2003 #96}. In this case, 

the authors concluded that the while the large conformational change seen in myosin 

and F1-F0 ATPase was consistent with a power-stroke type movement, the kinesin 

followed a Brownian ratchet-type mechanism. The perturbation-response method has 

gained greater traction as seen in the efforts to develop a useful a metric {Nevin 
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Gerek, 2013 #121; Atilgan, 2009 #120} to describe a single residue’s response to an 

applied force in a given position, as a predictive tool. 

Studies like this have also prompted initiatives to categorise protein structures 

dynamically {Warren, 2014 #89}. Further databases storing results from normal mode 

analysis using ENMs on large number of structures have been built, such as ProMode 

Elastic{Wako, 2011 #121} or MolmovDB (Database of Macromolecular 

Movement{Gerstein, 1998 #128}, respectively. These show the interest of the 

community and the potential of ENMs for the characterisation of intrinsic dynamics 

in a way that can complement existing structural classifications systems. In addition, 

there have been efforts in using dynamic information as a means of alignment 

different proteins, and their developments have provided insight into comparing 

dynamics in general {Carnevale, 2007 #33; Davis, 2014 #98;Tobi, 2012 #93}. 

 5.4 Comparing dynamics in non-conserved proteins  
Interestingly it has been difficult to show that there is greater selection pressure on the 

conservation of dynamics than on the structure in general {Echave, 2008 #24}. Rather 

the low energy normal modes are more robust to random structural perturbations and 

this can be seen as the reason for their conservation {Echave, 2010 #25;Echave, 2012 

#26}. The comparison of dynamics based on shape and fold, independent of sequence 

similarity or conservation, has also been a topic of great interest {Lu,  #116;Tama, 

2006 #65}.  

Hollup et al showed that computer-generated models based on ideal structures, 

stripped of influences of sequence conservation and evolutionary links, could be used 

reliably in the analysis of dynamics {Hollup, 2011 #22}. They showed that the 

arrangement of secondary structures in space in a protein is an important component 

of the low frequency modes, while the loops play a minor role. Another study 

characterised the motions of two proteins with cylindrical symmetry, the beta-barrel 

Dronpa and the toroidal DNA-clamp, as ideal structures and compared them both 

qualitatively to find similarities in their global motions {Hu, 2012 #64}.  

6. Computational tools and frameworks 

The simplicity of the ENMs makes them relatively easy to implement if routines for 

the necessary linear algebra is provided. This makes it easy to integrate ENMs with 
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other kinds of structural analysis. Most model developers also make implementations 

available online or upon request. In addition the interested user can choose from a 

range of tools and frameworks available for computing and analyzing ENMs. The 

Molecular Modelling Toolkit {Hinsen, 2000 #452} and ProDy {Bakan, 2011 #1638} 

are libraries for the programming language Python that support normal mode 

decomposition, analysis and visualization of ENMs. For the statistical computing 

software R, ENMs are integrated into packages for analyzing Molecular Dynamics 

data like LOOS {Romo, 2009 #46} and Bio3D {Grant, 2006 #45}. ∆∆PT {Rodgers, 

2013 #44} is a collection of scripts for ENM and principal component analysis that 

allows the application of a range of ENMs without requiring familiarity with 

programming. A range of web servers is also available {Hollup, 2005 #472;Suhre, 

2004 #971;Eyal, 2006 #282;Seo, 2012 #907;Kruger, 2012 #571;Lindahl, 2006 #633}. 

These provide a variety of analysis on ENM normal modes, typically making the 

analysis accessible for an audience less experienced with computational analysis. 

Another initiative that aims to take ENMs to a wider audience is the software Maven, 

provided as a standalone application for analysis and visualization of ENMs 

{Zimmermann, 2011 #47}. 

… 

7. Conclusion/Perspectives 
The direction that ENMs and comparing them should head towards. 
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Figure captions 
 

Figure 1: Influence of the STAMP alignment of 53 structures with the TIM-

barrel fold on similarity measures. A) STAMP alignment of 53 structures with the 

TIM-barrel fold. The light grey lines show the superimposition of the structures, 

while the dark grey cartoon of the secondary structure shows one of them as a 

representative. The red spheres highlight the points on the structure that are conserved 

throughout the alignment with a bias towards the N-terminus. B) K-means clustering 

(with k = 4) of the Bhattacharya score analysis comparing the covariances using the 

STAMP alignment. The colours signify structures that are from the same family, and 

are grouped such that red and black are from one superfamily, and blue and green are 

from the other.We see a heterogenous clustering of the structures across superfamilies 

and families. 

 

Figure 2:  Influence of the MUSTANG alignment of 53 structures with the TIM-

barrel fold on similarity measures. A) MUSTANG alignment of 53 structures with 

the TIM-barrel fold. The light grey lines show the superimposition of the structures, 

while the dark grey cartoon of the secondary structure shows one of them as a 

representative. The red spheres highlight the points on the structure that are conserved 

throughout the alignment, which are distributed evenly here. B) K-means clustering 

(with k = 4) of the Bhattacharya score analysis comparing the covariances using the 

MUSTANG alignment. The colours signify structures that are from the same family, 

and are grouped such that red and black are from one superfamily, and blue and green 

are from the other. We see good groupings with respect to the family level, but a less 

distinct separation at the superfamily level with respect to the green group. 
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