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Elastic network models (ENMs) are entropic models that have
demonstrated in many previous studies their abilities to capture
overall the important internal motions, with comparisons having
been made against crystallographic B-factors and NMR conforma-
tional variabilities. ENMs have become an increasingly important
tool and have been widely used to comprehend protein dynamics,
function, and even conformational changes. However, reliance
upon an arbitrary cutoff distance to delimit the range of interac-
tions has presented a drawback for these models, because the
optimal cutoff values can differ somewhat from protein to protein
and can lead to quirks such as some shuffling in the order of the
normal modes when applied to structures that differ only slightly.
Here, we have replaced the requirement for a cutoff distance and
introduced the more physical concept of inverse power depen-
dence for the interactions, with a set of elastic network models that
are parameter-free, with the distance cutoff removed. For small
fluctuations about the native forms, the power dependence is the
inverse square, but for larger deformations, the power depen-
dence may become inverse 6th or 7th power. These models
maintain and enhance the simplicity and generality of the original
ENMs, and at the same time yield better predictions of crystallo-
graphic B-factors (both isotropic and anisotropic) and of the direc-
tions of conformational transitions. Thus, these parameter-free
ENMs can be models of choice whenever elastic network models
are used.

B factors � conformational entropy

Protein dynamics can provide important insights into protein
function. Most proteins carry out their functions through

conformational changes of the structures. In X-ray structures,
the information about thermal motions is provided by the
Debye-Waller temperature factors or B-factors, which are pro-
portional to the mean square fluctuations of atom positions in a
crystal. Thus, accurate predictions of crystalline B-factors offer
a good starting point for understanding the functional dynamics
of proteins.

A number of computational and statistical approaches has
been proposed to predict protein B-factors from protein se-
quence (1–7), atomic coordinates (8–13), and electron density
maps (14). The atomic coordinate-based methods such as mo-
lecular dynamics (MD) (15–18) and normal mode analysis
(NMA) (19–22) are computationally expensive, and thus, in the
past decade, the elastic network model (ENM), with NMA, using
a single parameter harmonic potential, usually coarse-grained,
has been widely used for studying protein dynamics including
B-factor predictions. The ENM for isotropic fluctuations is
called the Gaussian network model (GNM) (23, 24), where only
the magnitudes of the fluctuations are considered. Its anisotro-
pic counterpart, where the directions of the collective motions
are also examined, is called the anisotropic network model
(ANM) (25), and these can be compared with the experimental
anisotropic temperature factors (26–29), but generally these
comparisons are worse than when atomic representations are
used (30).

Previous studies have shown that in many cases, GNM-
predicted B-factors are in quite good agreement with the
experimental B-factors determined by crystallographers (8–11).
Kundu et al. (10) studied 113 X-ray protein structures and found
that GNM is able to predict the experimental B-factors well,
yielding an average correlation between prediction and experi-
ment of �0.59. The results of Sen et al. showed that the
correlations between experimental B-factors and the GNM-
predicted values are quite similar at either coarse-grained or
atomic levels (12), which is consistent with its being overall an
entropy model. The ANM can also be used for B-factor pre-
dictions, although, in reproducing the isotropic B-factors, it
was noted that ANM generally performs slightly worse than
GNM (10).

In the ENM, a parameter—the cutoff distance is used to
define the connections and placement of springs between residue
pairs. Only the residue pairs within a given cutoff distance are
considered to be connected to one another. The cutoff in GNM
is generally set at 7–8 Å. Kundu et al. (10) showed that 7.3 Å gave
the best results for B-factor prediction for most of the proteins
in the dataset. In ANM, the optimal cutoff is usually larger,
�13–15 Å (25). Besides the parameter for cutoff distance, the
spring constant is another parameter. However, in current
practice, most researchers use a uniform spring constant for all
connected residue pairs, and this spring constant is used simply
to scale overall the range of B-factors so the spring constant is
not actually a fundamental parameter in the model in the same
sense that the cutoff distance is. In some studies (31, 32),
stronger spring constants have been assigned for rigid elements
in the structure. Erman empirically fitted the experimental
B-factors by iteratively changing the spring constants of the
Kirchoff matrix for GNM (33). One concern about this approach
is that the results of such a fitting (or overfitting) may not have
a real physical basis, even though the correlations achieved
between experiment and prediction can be excellent. The Hinsen
(34–37) and the Phillips (29) groups have used a distance-
dependent force constant in their studies of protein dynamics.
They proposed a force constant exhibiting an exponential decay
over the distance between a pair of interacting atoms. The
Hinsen model has some physical basis, but, it still does not fully
avoid using an arbitrary distance parameter. In his model, the
force constant k is defined as an exponential decay of distance
r: k(r) � c exp(�r2/r0

2), where r0 is an arbitrary parameter (in
Hinsen’s studies, r0 was taken as 3.0 Å). There are several
problems with using a cutoff distance. First, the values taken are
arbitrary to a significant extent. Second, the optimal values vary
somewhat for different proteins. Last, there is a discontinuity in
the residue-residue interaction potential at the cutoff distance.
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There can be model artifacts such as the same mode for 2 only
slightly different structures being significantly different with the
corresponding mode indices shuffled.

Recently Lin et al. proposed a weighted contact number
(WCN) model (38) for B-factor predictions. Using the WCN
model, they found a good correlation between the calculated
WCN and the experimental B-factors. The main difference
between the WCN and previous contact number-based models
(39, 40) is that the WCN model does not use any cutoff distance,
but instead considers the contacts between all pairs of residues.
The effect of a contact between a pair of residues is weighted by
the inverse of their square distance. One advantage of the WCN
model is that it avoids choosing an arbitrary cutoff distance.
Inspired by the simple idea of the WCN model, here we propose
a parameter-free elastic network model (pfENM). The idea is to
assume that there is an interaction between all residue pairs, and
to make their interaction strengths inversely proportional to the
square distance of their separation. In this way, we can avoid
using an arbitrary cutoff distance in the models and therefore
avoid the problems outlined above. And, we learn that this
refined ENM actually shows significant improvements over the
original ENMs. In our parameter-free models, we use an inverse
2nd power (square distance) to model the spring constants. Past
work had used an inverse 6th power spring (29, 36) or a spring
of exponential form (34–37). However, our results show that our
pfENM with inverse 2nd power springs clearly outperforms
them all in B-factor predictions (see Table S1 and Table S2).

While a cutoff value was used in the original atomic elastic
network model of Tirion (41), the use of a cutoff distance may also
have been supported conceptually by the typical reliance upon a
cutoff distance for defining coarse-grained contact energies derived
from a set of known structures (42, 43). In the latter case the use
of a cutoff distance is an attempt to avoid some of the details of
interactions and to capture average effects. However, when com-
puting molecular motions, the averaging represented in the use of
a cutoff distance is not likely appropriate because it will inevitably
eliminate some of the structural details, and ignore the character-
istic physical nature of interactions between atoms that should
diminish with increasing separation, since the springs should
weaken to represent less cohesion between more distant parts. In
fact, we find that the use of a cutoff distance, in addition to the use
of the distance power of �2, always yields worse fits for the B-factor
data (See Table S3 and Table S4).

We test these parameter-free models (pfGNM and pfANM)
using a large nonredundant dataset containing 1,220 X-ray
structures and a dataset that contains 341 high-resolution struc-
tures having anisotropic B-factor entries. Our results show that
for B-factor predictions, the pfENM models have an even better
performance than the original ENM. Since these parameter-free
models also maintain the simplicity of ENMs, we thus propose
that in the future, these parameter-free ENMs ought to be the
models of choice whenever elastic network models are required.

Results
Isotropic B-Factor Predictions – GNM. In this section, the GNM and
pfGNM are compared for scalar isotropic B-factor predictions.
The correlation between the computed B-factors and the ex-
perimental values are calculated for the 1,220 protein structures
in our dataset. We have performed investigations to determine
the best inverse power to use, and the detailed results are given
in Tables S1–S4.

In the work of Kundu et al. (10), the mean of the correlations
between experimental B-factors and the GNM predicted values
was 0.59. For our dataset, we obtain a mean correlation of 0.55
using the same GNM, and 0.60 when using pfGNM, both of
which are similar to their results. Here, we point out that we must
be cautious in interpreting these ‘‘mean values’’ since they are
dataset dependent. With our dataset, the mean correlation

values from pfGNM (0.60) and GNM (0.55) clearly indicate that
pfGNM performs significantly better than GNM.

A more detailed comparison of the correlations is found in the
histograms of the correlation distributions. See Fig. 1, which
shows histograms of the distribution of correlations between
experimental B-factors and the computed values for GNM and
pfGNM. The percentage of proteins having correlation values
�0.5 is �75% using pfGNM, which is better than the 67% found
by using the original GNM with a cutoff distance. For �73% of
proteins, pfGNM yields better results than GNM.

To further compare the results from GNM and pfGNM, we
calculate the percentage of B-factor correlations improved by
using pfGNM over GNM. Fig. 2 displays the improvement with
pfGNM over the original GNM for B-factor prediction. For
�57% of proteins, the pfGNM correlation is at least 5% better
than the GNM correlation.

Further Isotropic B-Factor Predictions. Similar comparisons are per-
formed between pfANM and ANM. Fig. 3 shows the histograms of
the distribution of correlations between experimental B-factors and
ones computed using ANM and pfANM. Similar to the comparison
between pfGNM and GNM, the mean correlation values from
pfANM (0.55) and ANM (0.46) indicate that pfANM peforms
significantly better than ANM. The percentage of proteins having
correlation values �0.5 is �65% using pfANM, which is better than
that (50%) using the original ANM with a cutoff distance. For
�83% of proteins, pfANM yields better results than ANM.

The improvement of pfANM over ANM is further shown by
the increased percentage of B-factor correlations in Fig. 4. For
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Fig. 1. Distribution of correlations between experimental and the computed
B-factors from pfGNM and GNM. It can be seen clearly that pfGNM yields
higher correlations than GNM. Approximately 73% of proteins show better
agreement with pfGNM than with GNM.
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Fig. 2. Percentage (%) of correlation improvement in B-factors by using
pfGNM in comparison with GNM. (The last bar represents all of the cases
where improvements are 100% or higher).
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�72% of proteins, the pfANM correlation is at least 5% better
than the ANM correlation.

Anisotropic B-Factor Predictions. To test the models more thor-
oughly, in this section we will look at the performance of these
parameter-free ENMs (pfENM) for anisotropic B-factor pre-
diction. In comparison with isotropic B-factors, anisotropic
B-factors provide not only the magnitudes of mean square
fluctuations, but also information about the directions of the
fluctuations. In PDB files, the anisotropic B-factors are given as
6 numbers that represent the anisotropic tensor of the fluctua-
tions. Hence the anisotropic B-factors provide more data about
the fluctuations. These are only available for some of the higher
resolution crystal structures. Fortunately, because of improving
experimental structure quality, the number of such proteins with
anisotropic B-factors has been increasing rapidly.

In recent work (26), we applied the ANM to study the
anisotropic fluctuations of 341 proteins. Here, we carry out a
similar study using pfANM. Again, we will see that pfANM
performs significantly better than ANM.

The results of anisotropic B-factor predictions from both
pfANM and ANM are listed in Table 1. The experimental and
calculated anisotropic B-factor tensors, which can be repre-
sented by ellipsoids, are compared [see (26) for details]. Spe-
cifically, the first and second anisotropies (� and �) of the
experimental anisotropic B-factors are compared with those
calculated from the models (pfANM or ANM). The first/second
anisotropy is defined as the ratio of the length of the shortest (or
second shortest) axis to the longest axis. The first column in
Table 1 shows the mean difference between the experimental
first anisotropy and the calculation. The means are taken over all
proteins, and for each protein, over all its residues (each residue
is represented by its alpha carbon). Similarly for the second
column, the mean difference is for the second anisotropy. It is
seen in Table 1 that pfANM clearly does better than ANM in
predicting anisotropies even though the gain is small. The mean
� and � values in the third and fourth column describe how well
the directions of the ellipsoids match between experiment and

calculation. Specifically, � is the angle between the longest axes
of the ellipsoids (which represent the anisotropic B-factor ten-
sors of experiment and calculation), and � is the rotation angle
required to align the second longest axes of the 2 ellipsoids once
their longest axes are aligned (26). Therefore, a perfect predic-
tion would render both � and � as 0. From the Table 1, we see
that neither pfANM nor ANM does well in this regard, for
possible reasons that were discussed in (26). However, the point
of interest here is that pfANM does slightly better than ANM.

A more rigorous measure for comparing anisotropic tensors
are the correlation coefficient of tensors proposed by Merritt
(44). If U and V are 2 anisotropic B-factor tensors, then the
correlation coefficient between them is given by:

cc(U,V) �
(detU�1detV �1)1/4

[(1/8)det(U�1 � V�1)]1/2 ,

The normalized correlation coefficient is given by:

ncc(U,V) �
cc[U,(Ueq/Veq)V]

cc(U,Uiso)cc(V,Viso)
,

where Uiso and Viso describe a pair of isotropic atoms, with
Uiso

11 � Uiso
22 � Uiso

33 � Ueq � trace(U)/3 and similarly for Viso.
This normalized correlation coefficient ncc in Eq. 2 will be �1
if the 2 atoms described by U and V are more similar to each
other than to an isotropic case, and will not be �1 otherwise.
Thus, ncc provides an excellent measure to compare the size,
orientation, and direction of the 2 tensors. In practice, a simple
count of how many atoms in a structure have their normalized
correlation coefficients larger than 1 provides a good measure of
the quality of anisotropic B-factor prediction.

The percentages of residues with ncc larger than 1, as com-
puted by pfANM and ANM, are listed in the last column of Table
1. Using this ncc measure, it can clearly be seen that pfANM
yields significant improvements over ANM in anisotropic B-
factors predictions.
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Fig. 3. Correlations between experimental and calculated B-factors from
pfANM and ANM. It is clearly seen that pfANM does significantly better than
ANM. Approximately 83% of proteins show improvements with pfANM over
ANM.

Table 1. Predictions of anisotropic B-factors using pfANM and the original ANM

��exp � �calc� ��exp � �calc� ��� ��� ncc � 1

ANM 0.04 � 0.17 0.07 � 0.17 50.6 � 22.6 55.4 � 22.2 68%
pfANM 0.02 � 0.16 0.02 � 0.16 45.0 � 23.0 54.2 � 22.4 82%

All symbols in the column headers are defined in the text (� and � are the first and second anisotropies, � and � angles are direction preferences, and ncc is
the normalized correlation coefficient).
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Fig. 4. Percentage (%) of correlation increase in B-factors by using pfANM
over ANM. (The last bar represents all cases where the increase is greater than
or equal to 100%).
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Discussion
Besides testing the performance of pfANM in isotropic and
anisotropic B-factor predictions, we have also looked at how well
the modes of pfANM are related to experimentally observed
conformational changes, especially the conformational differ-
ences between pairs of experimental structures of the same
protein that has both an ‘‘open’’ and a ‘‘closed’’ form (31, 32,
45–49). We conduct this study using the same approach and
dataset as in our previous work (32), except that here we now
recalculate using pfANM. There are a total of 170 structure pairs
in the dataset.

The conformational changes between the ‘‘open’’ and
‘‘closed’’ forms of the 170 proteins are interpreted with the
modes calculated from both pfANM and ANM. We employ 2
measures to quantify how well the conformational changes can
be explained by pfANM or ANM modes. One of them is the
maximum overlap (MO, cosine of angle between 2 vectors),
which is the maximum of the overlap values between the
observed conformational change and the direction of a mode. If
there is a single mode that contributes significantly to the
observed conformational change, it has a high overlap value and
it might be a mode that is functionally important. Fig. 5 shows
the maximum overlap (MO) values for both pfANM and ANM.
The 2 models are quite comparable even though the modes of
ANM match slightly better with the observed conformational
changes than do those of the pfANM. It is, however, likely that
distortions of different magnitudes may exhibit different dis-
tance dependences. First, both ANM and pfANM assume har-
monic interactions among the residues and consequently, both
models are most valid for interpreting local f luctuations (B-
factors). When applying these models to interpret larger con-
formational changes, caution needs to be taken. The larger
deformations observed in these conformational transitions often
correspond to the proteins moving as if they were comprised of
rigid domains or clusters, that is, the local cohesion within a
domain/cluster appears to be much stronger relative to the
interdomain cohesiveness. Compared with the ANM model with
a cutoff distance, the pfANM with inverse square distance
dependence has stronger long-range cohesion that does not
permit discrete domains to move sufficiently. Indeed, when we
increase the power of the inverse square function built into the
pfANM to a higher power to strengthen the short range inter-
actions over the longer range interactions, to permit domains to
move, then the pfANM model outperforms the ANM in its
interpretation of conformational changes. As shown in Table S5,
the best power dependence of the pfANM for the large confor-
mational transitions is in the range of r�6 to r�8.

In this work, we developed a parameter-free ENM (pfENM)
and compared its performance with the conventional ENM that
uses a cutoff distance to define binary interactions—either on or
off. We have found that our pfENMs are not only simpler
(without any cutoff distances), but they also perform better than
usual ENMs, for both isotropic and anisotropic B-factor predic-
tions. The removal of the cutoff distance may also remedy the
problem of the scrambling of the modes that sometimes occurs
between structures that differ only slightly (13), and other
problems caused by the discontinuity of the interactions at the
boundary of the cutoff distance. Thus, these parameter-free
ENMs should be the models of choice wherever elastic network
models are used. Recall that the ENMs are conformational
entropy models, so these distance-dependent springs are better
able to capture the conformational entropic fluctuations than
can the use of a cutoff distance. This means that the cohesiveness
of protein structures is better represented by interactions de-
caying with the inverse square of the separation distances. In
some ways this corresponds to others’ findings where they used
inverse 6th power springs (29, 36)

Improvements to the ENMs are critical for their use in
developing mechanisms (50–53). Previously springs of different
strengths for different classes of interactions were not been
found to improve the motions computed with ENMs (54). The
improvements found here do suggest that the introduction of
different power dependences for different extents of deforma-
tion leads to gains. This introduces an approach, different in
formulation from distance-dependent interaction energies, for
distance-dependent entropy-related cohesion.

Methods
Protein Dataset. We use PDB-PEPRDB (55) to select protein
structures from the Protein Data Bank (PDB) (56). We choose
protein structures determined by X-ray crystallography at res-
olutions better than 2.0 Å and with R-factors better than 0.2. We
exclude protein fragments or membrane proteins. All protein
sizes are at least 50 residues with sequence identities not �25%
and structure similarities differing by �10 Å (parameter in
PDB-PEPRDB). We exclude structures that only have backbone
atoms or alpha carbons. We also remove any structure that does
not provide experimental B-factors. Finally, we obtain and use
1,220 protein structures in our dataset.

For anisotropic B-factors, we choose to include in our dataset
all protein crystal structures in the Protein Data Bank (PDB)
that have resolution equal or better than 1.2 Å and have
anisotropic B-factor entries. There were 341 such structures in
our dataset. The dataset is the same one that we used in (26).

Coarse-Grained Gaussian Network Model (GNM). In the GNM (8), a
protein structure is represented by its alpha carbons only. The
relative fluctuations between a pair of contacting residues are
assumed to follow a Gaussian distribution in its dependence on
the square of the separation (hence the name of the model).
Alpha carbon pairs are considered to be in contact when their
separation distance is smaller than a preset cutoff distance
(�7–8 Å, here we use 7.3 Å). All springs are taken to be at
equilibrium for the input structure, and the input structure is
assumed to be the lowest in energy, for the computed fluctua-
tions around it. One advantage of this approach is that the
fluctuations of each atom around its equilibrium position, and
their cross-correlations can be expressed in simple analytical
form. To determine the atomic fluctuations, we first form the
Kirchhoff matrix based on the contact information:

�ij � � � 1 if i � j and rij � rc

0 if i � j and rij 	 rc

� 	i, j
i�ij if i � j
,
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Fig. 5. Distribution of Maximum overlap (MO) values between the confor-
mational change and a single mode of ANM or pfANM for all protein structure
pairs studied.
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where rij is the distance between atoms i and j, and rc is the cutoff
distance. The mean square fluctuations of each atom are given
by:

��Ri
2
 � (3kBT / 
)[��1]ii ,

where 
 is the spring constant. Then the theoretical B-factors can
be conveniently expressed as:

Bi � 8�2 ��Ri
2
 / 3 .

Anisotropic Network Model (ANM). In the ANM (25), the Hessian
matrix contains the second derivatives of the energy function.
For a structure with n residues, the Hessian matrix H contains
n by n superelements each of size 3 by 3. The ijth superelement
of H is given as:

Hij � �
�2V

�Xi�Xj

�2V
�Xi�Yj

�2V
�Xi�Zj

�2V
�Yi�Xj

�2V
�Yi�Yj

�2V
�Yi�Zj

�2V
�Zi�Xj

�2V
�Zi�Yj

�2V
�Zi�Zj

�
where Xi, Yi, and Zi are the Cartesian components of residue i,
and V represents the potential energy of the system. The
potential between residues i and j is harmonic, modeled by a
Hookean spring, for residues i and j within the cutoff distance.
In the ANM (25), a larger cutoff distance than for GNM, say 13
Å, is normally used to establish the spring connections between
residues. The Hessian matrix H is the counterpart of the
Kirchhoff matrix � in the GNM. Similarly, the inverse of H
contains n by n superelements, with the superelements of H�1,
being 3 by 3 matrices, describing the correlations between the
components of �Ri. and �Rj. Specifically,

��Ri
2
 � (3kBT / 
)�trace( [H�1]ii) .

Parameter-Free ENM (pfENM). In the pfENM models, there is no
cutoff distance. All pairs of residues are considered to be
interacting with one another, although their interaction
strengths are weighted by the inverses of their square distances.
(A higher power of distances could have been used, however,
from our preliminary results, the differences would be small.).
Thus, residue pairs that are far apart have weaker interactions
than those that are close. In pfGNM, the elements of the
Kirchhoff matrix � are calculated as:

�ij
pf � � rij

�2 if i � j
�	i, j
i�ij if i � j ,

where rij is the distance between residues i and j. In the pfANM,
each superelement of the Hessian matrix is weighted by the
inverse of the square distance between that residue pair, that is,

Hij
pf � Hij rij

�2 .

Comparing Computed B-Factors with Experimental Values. The cor-
relation between experimental and calculated B-factors is given
by:

corr(Bexp, Bcalc)�
Bexp��Bexp


��Bexp��Bexp
��

Bcalc��Bcalc


��Bcalc��Bcalc
��
.

A perfect correlation between the 2 vectors gives a value of 1
whereas perfect anti-correlation gives �1. Here, the computed
B-factors can be from either the GNM, ANM, or pfENM
models.
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