
Chapter 5
Generalized Spring Tensor Models
for Protein Fluctuation Dynamics
and Conformation Changes

Hyuntae Na, Tu-Liang Lin, and Guang Song

Abstract Background: In the last decade, various coarse-grained elastic network
models have been developed to study the large-scale motions of proteins and
protein complexes where computer simulations using detailed all-atom models
are not feasible. Among these models, the Gaussian Network Model (GNM) and
Anisotropic Network Model (ANM) have been widely used. Both models have
strengths and limitations. GNM can predict the relative magnitudes of protein
fluctuations well, but due to its isotropy assumption, it cannot be applied to predict
the directions of the fluctuations. In contrast, ANM adds the ability to do the latter,
but loses a significant amount of precision in the prediction of the magnitudes.

Results: In this book chapter, we present a single model, called generalized spring
tensor model (STeM), that is able to predict well both the magnitudes and the
directions of the fluctuations. Specifically, STeM performs equally well in B-factor
predictions as GNM and has the ability to predict the directions of fluctuations as
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ANM. This is achieved by employing a physically more realistic potential, the Gō-
like potential. The potential, which is more sophisticated than that of either GNM
or ANM, though adds complexity to the derivation process of the Hessian matrix
(which fortunately has been done once for all and the MATLAB code is freely
available electronically at http://www.cs.iastate.edu/~gsong/STeM), causes virtually
no performance slowdown. In addition, we show that STeM can be further extended
to an all-atom model and protein fluctuation dynamics computed by all-atom STeM
matches closely with that by Normal Mode Analysis (NMA).

Conclusions: Derived from a physically more realistic potential, STeM proves to
be a natural solution in which advantages that used to exist in two separate models,
namely GNM and ANM, are achieved in one single model. It thus lightens the
burden to work with two separate models and to relate the modes of GNM with
those of ANM at times. By examining the contributions of different interaction
terms in the Gō potential to the fluctuation dynamics, STeM reveals, (i) a physical
explanation for why the distance-dependent, inverse distance square (i.e., 1/r2)
spring constants perform better than the uniform ones, and (ii), the importance of
three-body and four-body interactions to properly modeling protein dynamics.

STeM is not limited to coarse-grained protein models that use a single bead,
usually the alpha carbon, to represent each residue. The core idea of STeM, deriving
the Hessian matrix directly from a physically realistic potential, can be extended
to all-atom models as well. We did this and discovered that all-atom STeM model
represents a highly close approximation of NMA, yet without the need for energy
minimization.

Keywords Normal mode analysis • Hessian matrix • Spring tensor model •
Protein dynamics • Mean-square fluctuations

Abbreviations

ENM Elastic Network Model
GNM Gaussian Network Model
ANM Anisotropic Network Model
STeM Spring Tensor Model
NMA Normal Model Analysis
ANMr2 ANM using 1/r2 as spring constant

5.1 Introduction

It is now well accepted that the functions of a protein are closely related to not
only its structure but also its dynamics. With the advancement of the computational
power and increasing availability of computational resources, function-related

http://www.cs.iastate.edu/~gsong/STeM
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protein dynamics, such as large-scale conformation transitions, has been probed
by various computational methods at multiple scales. Among these computational
methods, coarse-grained models play an important role since many functional
processes take place over time scales that are well beyond the capacity of all-atom
simulations [1]. One type of coarse-grained models, the elastic network models
(ENMs), have been particularly successful and widely used in studying protein
dynamics and in relating the intrinsic motions of a protein with its function-related
conformation changes over the last decade [2–5].

The reason why ENMs have been well received as compared to the conventional
normal mode analysis (NMA) lies at its simplicity to use. ENMs do not require
energy minimization and therefore can be applied directly to crystal structures to
compute the modes of motions. In contrast, minimization is required for carrying out
the conventional normal mode analysis (NMA). The problematic aspect of energy
minimization is that it usually shifts the protein molecule away from its crystal
conformation by about 2 Å. In addition, in ENMs analytical solutions to residue
fluctuations and motion correlations can be easily derived. On the other hand, the
simplicity of ENMs leaves much room for improvement and many new models have
been proposed [6–12].

The two most widely used ENM models are Gaussian Network Model (GNM)
and Anisotropic Network Model (ANM). They have been used to predict the
magnitudes or directions of the residue fluctuations from a single structure and have
been applied in many research areas [2, 5], such as domain decomposition [13]
and allosteric communication [14–17]. Both models have their own advantages and
disadvantages. GNM can predict the relative magnitudes of the fluctuations well,
but due to its isotropy assumption, it cannot be applied to predict the directions of
the fluctuations. In contrast, ANM adds the ability to do the latter, but it loses a
significant amount of precision in the prediction of the magnitudes.

5.1.1 Gaussian Network Model

Gaussian Network Model (GNM) was first introduced in [3] under the assumption
that the separation between a pair of residues in the folded protein is Gaussianly
distributed. Given its simplicity, the model performs extremely well in predicting
the experimental B-factors. The model represents a protein structure using its C˛
atoms. The connectivity among the C˛’s is expressed in Kirchhoff matrix � (see
Eq. (5.1)). Two C˛’s are considered to be in contact if their distance falls within a
certain cutoff distance. The cutoff distance between a pair of residues is the only
parameter in the model and is normally set to be 7–8 Å. Let �ri and �rj represent
the instantaneous fluctuations from equilibrium positions of residues i and j and rij

and r0,ij be the respective instantaneous and equilibrium distances between residues
i and j. The Kirchhoff matrix � is:
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� ij D

8
ˆ̂
<̂

ˆ̂
:̂

�1 if i ¤ j \ r0;ij � rc
0 if i ¤ j \ r0;ij > rc
XN

j;j¤i� ij if i D j
(5.1)

where i and j are the indices of the residues and rc is the cutoff distance.
The simplicity of the Kirchhoff matrix formulation results from the assumption

that the fluctuations of each residue are isotropic and Gaussianly distributed along
the X, Y and Z directions. The expected value of residue fluctuations, h�r2i i, and
correlations, h�ri ��rji, can be easily obtained from the inverse of the Kirchhoff
matrix:

˝
�r2i

˛ D 3kBT

�

�
��1�

ii; (5.2)

˝
�r i ��rj

˛ D 3kBT

�

�
��1�

ii; (5.3)

where kB is the Boltzmann constant and T is the temperature. � is the spring
constant. The h�r2i i term is directly proportional to the crystallographic B-factors.

5.1.2 Anisotropic Network Model

GNM provides only the magnitudes of residue fluctuations. To study the motions of
a protein in more details, especially to determine the directions of the fluctuations,
normal mode analysis (NMA) is needed. Traditional NMA is all-atom based and
requires a structure to be first energy-minimized before the Hessian matrix and nor-
mal modes can be computed, which was rather cumbersome. Even after the energy
minimization, the derivation of the Hessian matrix is not easy due to the complicated
all-atom potential. In Tirion’s pioneering work [18], the energy minimization step
was removed and a much simpler Hookean potential was used, and yet it was shown
that the low frequency normal modes remained mostly accurate. Since then, the
Hookean spring potentials have been favored in most coarse-grained C˛ models [4,
19, 20]. One of such models is best known as Anisotropic Network Model (ANM)
[4] since it has anisotropic, directional information of the fluctuations. The potential
in ANM has the simplest harmonic form. Assuming that a given structure is at
equilibrium, the Hessian matrix 3N � 3N can be derived analytically from such a
potential [4]. The 3N � 3N Hessian matrix HANM can be repartitioned into N �N
super elements and each super element is a 3� 3 tensor.
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where Hi,j is the interaction tensor between residues i and j and can be
expressed as:
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6
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(5.5)

Let HC be the pseudo inverse of Hessian matrix HANM. The mean square
fluctuation h�r2i i and correlation h�ri ��rji can be calculated by summing over
the X, Y and Z components:

˝
�r2i

˛ D 3kBT

�

�
H C

3i�2;3i�2 CH C
3i�1;3i�1 CH C

3i;3i

�
(5.6)

˝
�ri ��rj

˛ D 3kBT

�

�
H C

3i�2;3j�2 CH C
3i�1;3j�1 CH C

3i;3j

�
(5.7)

5.1.3 Strengths and Limitations of GNM and ANM

The advantages of ANM or GNM over the conventional NMA lie in several aspects:
(i) it is a coarse-grained model and uses the Ca’s to represent the residues in a
structure; (ii) it does not require energy minimization and thus can be applied
directly to crystal structures to compute the modes of motions; (iii) it provides
analytical solutions to the mean square fluctuations and motion correlations.

The limitations of the GNM model. GNM provides only information on the
magnitudes of residue fluctuations but no directional information. Therefore, the
modes of GNM should not be interpreted as protein motions or components of the
motions, since the potential in GNM is not rotationally invariant [21].

The limitations of the ANM model. In contrast to that in GNM, the potential in
ANM is based on simple, harmonic Hookean springs and is rotationally invariant.
And thus, the modes of ANM do represent the possible modes of protein motions.
In doing this, however, ANM loses a significant amount of precision in predicting
the magnitudes of the fluctuations. The reason is that, in GNM, the fluctuations in
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the separation between a pair of residues are assumed to be Gaussianly distributed
and isotropic, while in ANM, because only a Hookean spring is attached between a
pair of residues i and j, the fluctuation of residue j is constrained only longitudinally
along the axis from i to j. The fluctuation is unconstrained transversely. The interac-
tion spring tensor HANM

i;j between residues i and j in Eq. (5.5) becomes the following
in the local frame (where the Z axis is along the direction from residues i to j):

H ANM
i;j D

2

4
0 0 0

0 0 0

0 0 1

3

5 (5.8)

Because the fluctuation of residue j is unconstrained transversely relative to residue
i, the fluctuations given by ANM are less realistic than those by GNM, which are
assumed to be isotropic. The isotropy in GNM is equivalent to an interaction spring
tensor between residues i and j of the following form:

H GNM
i;j D

2

4
1 0 0

0 1 0

0 0 1

3

5 (5.9)

From the two tensors HANM
i;j and HGNM

i;j given in Eqs. (5.8) and (5.9), the causes
for the limitations in GNM and ANM are clearly displayed. The unrealistic-ness
in ANM is an artifact resulting from its over-simplified potential. The isotropy
assumption of GNM, on the other hand, does a better job than ANM in modeling
the effect of residue interactions on the magnitudes of the fluctuations, but gives
up completely on representing the anisotropic nature that is intrinsic to all physical
forces and interactions, since only the magnitudes of the mean-square fluctuations
and cross-correlations were of concern when GNM was first proposed. Therefore, to
overcome the limitations of GNM and ANM, what is needed is a generalized inter-
action spring tensor that both is anisotropic and can exert more proper constraints on
the fluctuations than the ANM tensor HANM

i;j does. This calls for a model that has a
physically more realistic potential than that of ANM. Since potentials with only two-
body interactions can provide only longitudinal constraints, it is necessary to include
multi-body interactions in the potential in order to have transversal constraints
as well. The multi-body interactions provide additional diagonal and off-diagonal
terms to the interaction spring tensor between residues i and j. For example, by prop-
erly including three-body interactions, the interaction spring tensor may look like:

H STeM
i;j D

2

4
0 0 0

0 0 0

0 0 T .i; j /

3

5C
X

k

2

4
s11 .i; j; k/ s12 .i; j; k/ s13 .i; j; k/
s21 .i; j; k/ s22 .i; j; k/ s23 .i; j; k/
s31 .i; j; k/ s32 .i; j; k/ s33 .i; j; k/

3

5

(5.10)

where k represent the indices of the residues that interact with both residues i and
j through three-body interaction S. The first tensor on the right side of Eq. (5.10)
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represents the two-body interaction, which is similar to HANM
i;j , except that the

interaction strength T(i,j) depends on residues i and j, and thus may be distance-
dependent as well.

5.1.4 Our Contributions

To overcome the limitations of ANM and GNM, we have developed a generalized
spring tensor model for studying protein fluctuation dynamics and conformation
changes. It is called generalized spring tensor model, or STeM, for the reason that
the interaction between a pair of residues i and j is no longer a Hookean spring
that has the tensor form of Eq. (5.8), but takes a generalized tensor form (similar to
that in Eq. (5.10)) that can provide both longitudinal and transversal constraints on a
residue’s fluctuations relative to its neighbors. We obtain the generalized tensor form
by deriving the Hessian matrix from a physically more realistic Gō-like potential
(Eq. (5.11)), which has been successfully used in many MD simulations to study
protein folding processes and conformation changes [22–24]. In additional to the
Hookean spring interactions, the potential includes bond bending and torsional
interactions, both of which had been found to be helpful in removing the “tip effect”
of the ANM model [9]. The inclusion of the bond bending and torsional interactions
is reflected in the generalized tensor spring interaction between residues i and j, in
such a way that the tensor now includes not only the two-body interaction between
residues i and j, but also three-body and four-body interactions that involve residues
i and j (see Eq. (5.10)).

In doing this, the STeM model is able to integrate all the aforementioned
attractive features of ANM and GNM and overcome their limitations. Specifically,
STeM performs equally well in B-factors predictions as GNM and has the ability
to predict the directions of the fluctuations as ANM. This is accomplished with
virtually no performance slowdown. The only potential drawback of this model is
the significantly increased complexity in deriving the Hessian matrix. Fortunately,
this has been done once for all and the derivation results are available electronically
at http://www.cs.iastate.edu/~gsong/STeM.

STeM is physically more accurate by explicitly including the bond bending and
torsional interactions since they capture the chain behavior of protein molecules,
which are neglected in most elastic network models where a protein is treated as
an elastic rubber. Therefore, we have reasons to expect this model will further
distinguish itself in studying protein dynamics where a correct modeling of bond
bending and/or torsional rotations is critical.

STeM is not limited to coarse-grained protein models that use a single bead,
usually the alpha carbon, to represent each residue. The core idea of STeM, deriving
the Hessian matrix directly from a physically realistic potential, can be extended
to all-atom models as well. We did this and discovered that all-atom STeM model
represents a closer approximation of NMA than most other models.

http://www.cs.iastate.edu/~gsong/STeM
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5.2 Results and Discussion

5.2.1 Crystallographic B-Factor Prediction

Table 5.1 shows the correlation coefficients between the experimental and calculated
B-factors of the 111 proteins in the first dataset. The mean values of the correlation
coefficients of ANM, GNM, and STeM are 0.53, 0.59, and 0.60 respectively. STeM
provides the directional information of the residue fluctuations as ANM and has
an accuracy even slightly better than GNM in B-factor predictions. Figure 5.1
shows the distributions of the correlation coefficients between the calculated B-
factors and the experimental B-factors. STeM is the only model in which there are
instances where the correlation coefficient is above 0.85 and no instances where
the correlation coefficient is below 0.25. This implies that the performance of
STeM is more steady than either ANM or GNM. The scatter plot of the correlation
coefficients between ANM and STeM in Fig. 5.2 shows that STeM performs better
than ANM for 80 % of the proteins in the dataset.

Table 5.1 The correlation coefficients between the experimental and calculated B-factors
using different models

Protein R(Å) ANM GNM STeM Protein R(Å) ANM GNM STeM

1AAC 1.31 0.7 0:71 0.76 1ADS 1.65 0.77 0.74 0.71
1AHC 2.00 0.79 0:68 0.61 1AKY 1.63 0.56 0.72 0.6
1AMM 1.20 0.56 0:72 0.55 1AMP 1.80 0.62 0.59 0.68
1ARB 1.20 0.78 0:76 0.83 1ARS 1.80 0.14 0.43 0.41
1ARU 1.60 0.7 0:78 0.79 1BKF 1.60 0.52 0.43 0.5
1BPI 1.09 0.43 0:56 0.57 1CDG 2.00 0.65 0.62 0.71
1CEM 1.65 0.51 0:63 0.76 1CNR 1.05 0.34 0.64 0.42
1CNV 1.65 0.69 0:62 0.68 1CPN 1.80 0.51 0.54 0.56
1CSH 1.65 0.44 0:41 0.57 1CTJ 1.10 0.47 0.39 0.62
1CUS 1.25 0.74 0:66 0.76 1DAD 1.60 0.28 0.5 0.42
1DDT 2.00 0.21 �0:01 0.49 1EDE 1.90 0.67 0.63 0.75
1EZM 1.50 0.56 0:6 0.58 1FNC 2.00 0.29 0.59 0.61
1FRD 1.70 0.54 0:83 0.77 1FUS 1.30 0.4 0.63 0.61
1FXD 1.70 0.58 0:56 0.7 1GIA 2.00 0.68 0.67 0.69
1GKY 2.00 0.36 0:55 0.44 1GOF 1.70 0.75 0.76 0.78
1GPR 1.90 0.65 0:62 0.66 1HFC 1.50 0.63 0.38 0.35
1IAB 1.79 0.36 0:42 0.53 1IAG 2.00 0.34 0.52 0.44
1IFC 1.19 0.61 0:67 0.53 1IGD 1.10 0.18 0.44 0.27
1IRO 1.10 0.82 0:51 0.85 1JBC 1.15 0.72 0.7 0.73
1KNB 1.70 0.63 0:66 0.54 1LAM 1.60 0.53 0.63 0.71
1LCT 2.00 0.52 0:57 0.61 1LIS 1.90 0.16 0.43 0.3
1LIT 1.55 0.65 0:62 0.76 1LST 1.80 0.39 0.72 0.73
1MJC 2.00 0.67 0:67 0.61 1MLA 1.50 0.59 0.57 0.54
1MRJ 1.60 0.66 0:49 0.5 1NAR 1.80 0.62 0.76 0.74
1NFP 1.60 0.23 0:48 0.41 1NIF 1.70 0.42 0.58 0.61

(continued)
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Table 5.1 (continued)

Protein R(Å) ANM GNM STeM Protein R(Å) ANM GNM STeM

1NPK 1.80 0.53 0.55 0.64 1OMP 1.80 0.61 0.63 0.65
1ONC 1.70 0.55 0.7 0.58 1OSA 1.68 0.36 0.42 0.55
1OYC 2.00 0.78 0.73 0.77 1PBE 1.90 0.53 0.61 0.63
1PDA 1.76 0.6 0.76 0.58 1PHB 1.60 0.56 0.52 0.59
1PHP 1.65 0.59 0.63 0.65 1PII 2.00 0.19 0.44 0.28
1PLC 1.33 0.41 0.47 0.42 1POA 1.50 0.54 0.66 0.42
1POC 2.00 0.46 0.52 0.39 1PPN 1.60 0.61 0.64 0.67
1PTF 1.60 0.47 0.6 0.54 1PTX 1.30 0.65 0.51 0.62
1RA9 2.00 0.48 0.61 0.53 1RCF 1.40 0.59 0.63 0.58
1REC 1.90 0.34 0.5 0.49 1RIE 1.50 0.71 0.25 0.52
1RIS 2.00 0.25 0.24 0.47 1RRO 1.30 0.08 0.31 0.36
1SBP 1.70 0.69 0.72 0.67 1SMD 1.60 0.5 0.62 0.67
1SNC 1.65 0.68 0.71 0.72 1THG 1.80 0.5 0.53 0.5
1TML 1.80 0.64 0.64 0.58 1UBI 1.80 0.56 0.69 0.61
1WHI 1.50 0.12 0.33 0.38 1XIC 1.60 0.29 0.4 0.47
2AYH 1.60 0.63 0.73 0.82 2CBA 1.54 0.67 0.75 0.8
2CMD 1.87 0.68 0.6 0.62 2CPL 1.63 0.61 0.6 0.72
2CTC 1.40 0.63 0.67 0.75 2CY3 1.70 0.51 0.5 0.67
2END 1.45 0.63 0.71 0.68 2ERL 1.00 0.74 0.73 0.85
2HFT 1.69 0.63 0.79 0.72 2IHL 1.40 0.62 0.69 0.72
2MCM 1.50 0.78 0.83 0.79 2MHR 1.30 0.65 0.52 0.64
2MNR 1.90 0.46 0.5 0.47 2PHY 1.40 0.54 0.55 0.68
2RAN 1.89 0.43 0.4 0.31 2RHE 1.60 0.28 0.38 0.33
2RN2 1.48 0.68 0.71 0.75 2SIL 1.60 0.43 0.5 0.51
2TGI 1.80 0.69 0.71 0.73 3CHY 1.66 0.61 0.75 0.68
3COX 1.80 0.71 0.71 0.72 3EBX 1.40 0.22 0.58 0.4
3GRS 1.54 0.44 0.57 0.59 3LZM 1.70 0.6 0.52 0.66
3PTE 1.60 0.68 0.83 0.77 4FGF 1.60 0.41 0.27 0.43
4GCR 1.47 0.73 0.81 0.75 4MT2 2.00 0.42 0.37 0.46
5P21 1.35 0.4 0.51 0.45 7RSA 1.26 0.42 0.63 0.59
8ABP 1.49 0.61 0.82 0.62 – – – – –

Column R (Å) gives the resolution of each structure

Fig. 5.1 The distributions of
the correlation coefficients
between the experimental and
calculated B-factors
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Fig. 5.2 The scatter plot of
the correlation coefficients
by ANM and those by
STeM. For 80 % of the
proteins listed in Table 5.1,
STeM does better than ANM

Protein structures of higher resolution have more accurate data on atom coordi-
nates and B-factors. We investigate whether our model’s performance can be further
improved when the dataset used is limited to structures with higher resolution. We
select the 12 structures with resolution better than 1.3 Å from the first dataset. The
mean values of the correlation coefficients of these 12 structures are 0.56, 0.62,
and 0.63 for ANM, GNM, and STeM, respectively, which gives an improvement
of about 5–6 % for all of the three models. Since the improvement is based on a
relatively small set of 12 structures, a larger dataset is needed to further examine
this potential dependence of B-factor prediction accuracy on structure quality.

5.2.2 The Contributions of Different Interaction Terms
to the Fluctuations

The Gō-like potential in Eq. (5.11) has four different interaction terms, namely, bond
stretching, bond bending, torsional interactions, and the non-bonded interactions. It
is of great interest to investigate the relative contributions of these different terms to
the agreement with experimental B-factors. Since only the non-bonded interaction
term (V4) is able to provide by itself enough constraints to ensure the Hessian
matrix to have no more than six zero eigenvalues, V4 is used as the base term
for the evaluation of different terms’ contributions to the mean-square fluctuations.
The Hessian matrix of ANM, denoted by HANM, is used as another baseline for
comparison purposes. Table 5.2 lists the contributions of these different terms to the
improvement of B-factor predictions as they are added to the potential.

First, it is seen that the non-bonded interactions, as are present in H V4 and HANM,
play a dominant role in contributing to the B-factors. This is not surprising since
the mean-square fluctuations of a residue are mostly constrained by its interactions
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Table 5.2 The contributions of different interaction terms to the agreement with
experimental B-factors HANM

Hessian matrices used

Correlation
coefficient with
B-factors

Improvement with
respect to ANM

HANM 0.53 0.00
H V4 0.55 0.02
H V4 C H V1 0.57 0.04
H V4 C H V2 0.57 0.04
H V4 C H V3 0.56 0.03
H V4 C H V1 C H V2 0.59 0.06
H V4 C H V1 C H V3 0.58 0.05
H V4 C H V2 C H V3 0.57 0.04
H V4 C H V1 C H V2 C H V3 .D H STeM/ 0.60 0.07
H ANM C H V1 0.54 0.01
H ANM C H V2 0.54 0.01
H ANM C H V3 0.54 0.01
H ANM C H V1 C H V2 C H V3 0.56 0.03

HANM is the Hessian matrix of ANM. H V1 , H V2 , H V3 , and H V4 are the Hessian
matrices of the bond stretching (V1), bond bending (V2), torsional rotation (V3), and
non-local interaction (V4) terms, respectively

with its spatial neighbors, most of which are through non-bonded interactions. What
is more interesting is that H V4 term alone performs better than HANM. This is in
agreement with recent results that the performance of B-factor predictions can be
improved by using distance-dependent force constants [25, 26]. Particularly, the
spring constants that take the form of inverse distance square have been shown to
be superior in a recent exhaustive study that experimented with different distance-
dependent spring constants on a large dataset [16]. The Taylor expansion of the
non-bonded interaction term (V4) shows that it has an equivalent spring constant of
the form 120"

r20;ij
(see Eq. (5.36)), which is exactly proportional to the inverse of the

pairwise distance square. Thus, STeM provides a physics-based explanation for the
choice of using inverse square distance spring constants.

The contribution to the improvement in B-factor predictions from each of the
bonded interactions, such as that of bond stretching, is small, as had been pointed
out by Bahar et al. when GNM was first proposed over a decade ago [3]. However,
when the contributions of all of these four terms are added up, they together enable
the STeM model to gain a significant improvement over ANM to reach the level of
accuracy on a par with GNM.

5.2.3 Conformational Change Evaluation

It is known that the modes derived from the open form of a structure have better
overlaps and correlations with the direction of a protein’s conformation change than
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Table 5.3 The overlaps and correlations between the observed conformation changes and the most
involved modes using different models and the open conformations

Protein Overlap in ANM
Correlation
in ANM

Overlap in
STeM

Correlation
in STeM

Adenylate kinase 0.49(1) 0.62(1) 0.55(1) 0.63(1)
Alcohol dehydrogenase 0.69(3) 0.54(9) 0.73(2) 0.65(30)
Annexin V 0.33(1) 0.60(32) 0.33(1) 0.56(22)
Aspartate aminotransferase 0.56(9) 0.63(9) 0.68(6) 0.67(6)
Calmodulin 0.44(5) 0.62(77) 0.48(1) 0.62(16)
Che Y protein 0.46(1) 0.78(12) 0.40(1) 0.74(1)
Citrate synthase 0.48(7) 0.72(26) 0.49(5) 0.63(5)
Dihydrofolate reductase 0.71(1) 0.65(1) 0.73(1) 0.66(1)
Diphtheria toxin 0.43(1) 0.69(2) 0.50(2) 0.73(2)
Enolase 0.31(1) 0.45(34) 0.32(1) 0.49(53)
HIV-1 protease 0.67(1) 0.78(10) 0.85(1) 0.90(1)
Immunoglobulin 0.68(3) 0.57(3) 0.66(3) 0.58(3)
Lactoferrin 0.48(1) 0.64(24) 0.48(1) 0.70(36)
LAO binding protein 0.81(1) 0.74(1) 0.87(1) 0.80(1)
Maltodextrin binding protein 0.77(2) 0.66(2) 0.80(2) 0.70(2)
Seryl-tRNA synthetase 0.21(4) 0.59(10) 0.21(4) 0.60(37)
Thymidylate synthase 0.37(4) 0.69(9) 0.44(3) 0.68(9)
Triglyceride lipase 0.35(15) 0.50(25) 0.30(14) 0.56(24)
Triose phosphate isomerase 0.15(38) 0.28(11) 0.14(7) 0.30(8)
Tyrosine phosphatase 0.41(2) 0.57(27) 0.42(1) 0.59(25)

the ones derived from the closed form [20]. Here we apply the STeM model to study
the conformation changes between the open and closed forms of 20 proteins. The
open forms are used to calculate the normal modes. Table 5.3 lists the overlaps and
correlations of the observed conformation changes and the indices of the modes
that are most involved in the conformation changes. GNM is not considered since
it cannot provide directional information. The mean values of the overlaps and
correlation coefficients of ANM are 0.49 and 0.61 respectively, and 0.52 and 0.64
respectively for STeM. These amount to an improvement of about 5 % for STeM
over ANM on both overlap and correlation. Since the results are obtained based on
a relatively small set of 20 protein pairs, the significance of the improvement seen
here needs to be further tested by conducting a more exhaustive analysis that uses
a larger set of proteins and varying parameters, and preferably taking into account
the effect of crystal packing as well. We will leave this for future work. It is also
worth noting that, in both the overlap and correlation calculations, the modes that
are most involved in the conformation change tend to have lower indices in STeM
than in ANM (see Table 5.3), which may imply the modes of STeM be of higher
quality than those of ANM.
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5.2.4 Protein Fluctuation Dynamics Predicted by All-Atom
STeM Matches Closely with That of NMA

In this section, we apply all-atom STeM model to a large number of proteins and
show that the fluctuation dynamics produced by STeM matches closely with that of
NMA. To avoid the uncertainties existing in experimental B-factors due to crystal
packing and disorder, the atomic fluctuations computed from NMA and STeM are
compared with each other and not with the experimental B-factors.

To compute the fluctuations, all the structures are first energetically minimized
using the Tinker program [27] with the Charmm22 force field. The minimized
structures are then used by NMA, STeM, and later on, by ANM and ANMr2 models,
to compute the mean-square fluctuations. Some of the force field parameters from
Charmm22 are used in computing the STeM Hessian matrix. Let M be the N �N
diagonal mass matrix, I be the 3� 3 identity matrix, and ˝ be the operator of
the Kronecker product. Let bNMA and bSTeM denote the mean-square fluctuations
from NMA and STeM, respectively. The following procedure details how they are
determined:

1. Use Tinker [27] to determine the minimized conformation C whose potential
energy as defined by Charmm22 is fully minimized;

2. Obtain bNMA using Tinker;
3. Compute the Hessian matrix HSTeM of C using STeM;
4. Determine frequencies fi and modes mi of HSTeM in the mass-weighted Cartesian

coordinate as follows, where iD 7, 8, : : : , 3N:

(a) QH STeM  
�
M 1=2 ˝ I

��1
H STeM

�
M 1=2 ˝ I

��1I
(b) hfi ; Qmi i  i th eigenvalue and eigenvector of QH STeMI
(c) mi  

�
M 1=2 ˝ I

��1 Qmi;I
5. Compute the B-factor bSTeM using fi and mi;
6. Compute the correlation between bNMA and bSTeM.

The procedure is repeated for a dataset of 306 proteins.

5.2.4.1 STeM Outperforms ANM in Matching with NMA

Figure 5.3 compares the correlations between computed B-factors: bSTeM, bANM,
or bANMr2, with bNMA. 306 proteins, listed in Table 5.4, are used to compute
these correlations. Denote corr(a,b) by the correlation between two vectors a and
b. Figure 5.3a shows the scatter plot of corr(bNMA,bANM) and corr(bNMA,bSTeM),
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Fig. 5.3 The scatter plots of the correlation coefficients with NMA by different all-atom
models. (a) the scatter plot of corr(bNMA,bANM) and corr(bNMA,bSTeM), and (b) the scatter plot of
corr(bNMA,bANMr2) and corr(bNMA,bSTeM), where b denotes the mean-square fluctuations computed
by the different models. 306 proteins as listed in Table 5.4 are used for the computation

Table 5.4 List of proteins used in the all-atom STeM study

1BKR 2A28 2R8U 3B0F 3JQU 3NAR 3R87 3TME 4BBD
1C5E 2AAJ 2RK5 3B7H 3JTN 3NBC 3RDM 3TOE 4D8D
1DBF 2BT9 2RKL 3BD1 3K6F 3NGP 3RDO 3TP5 4DCZ
1G2B 2CKK 2VE8 3BRI 3K6T 3NJK 3RDS 3TPX 4DRO
1G2R 2F5K 2VKL 3BRL 3KBL 3NJM 3RE6 3TSI 4DRP
1GK7 2FE5 2VZC 3BZY 3KIK 3NS6 3RGR 3TWE 4E34
1GU1 2FL4 2WJ5 3CCD 3KJL 3NTW 3RHB 3TXQ 4E35
1HG7 2GBJ 2WPU 3CNK 3KNG 3NXA 3RJS 3TXS 4E6I
1I2T 2GBN 2WQ0 3CPO 3KOV 3O48 3RKV 3U1C 4E6S
1IHR 2HIN 2X3D 3CX2 3KXY 3O5Z 3RL8 3U80 4E8O
1J8Q 2HO2 2X48 3D4W 3L1F 3OBL 3RNJ 3UD8 4EDL
1J9E 2I5C 2X5H 3DS4 3L1X 3OJB 3RNV 3UJ3 4EDM
1JCD 2IC6 2X5T 3E2B 3L7H 3OMT 3RQ9 3VA9 4ERR
1JO0 2IGD 2XDH 3E56 3LKY 3OV4 3RSW 3VBG 4ES3
1MFG 2IZX 2XEM 3FG7 3LLB 3P38 3RY2 3VEJ 4EWI
1MG4 2J5Y 2XF6 3FX7 3LLO 3P6J 3RZW 3VGN 4EZA
1MK5 2JDC 2XF7 3FZW 3LNQ 3P7J 3S02 3VI6 4F26
1MM9 2JDD 2XG3 3G21 3LNW 3PA7 3SEI 3VMX 4F55
1N9M 2JKU 2XRH 3G9R 3LRD 3PE9 3SFM 3VMY 4F8A
1NWW 2LIS 2XUS 3GZ2 3LRG 3PO8 3SGP 3ZR8 4FQN
1OOT 2O31 2XW6 3H00 3M0R 3PYJ 3SGR 3ZSK 4FYH

(continued)
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Table 5.4 (continued)

1R29 2O37 2XX6 3HA4 3M0U 3Q47 3SHU 3ZSL 4GCN
1R6J 2O9V 2Y2T 3HFO 3M8J 3Q9Q 3SK4 3ZW2 4GCO
1T6F 2OEI 2Y3E 3HGM 3M9H 3QF3 3SK6 3ZZL 4GMQ
1TG0 2ON8 2Y3F 3HSH 3M9J 3QGL 3SK8 3ZZQ 4GS3
1U07 2ONQ 2Y4X 3HTU 3MAB 3QMQ 3SQF 4A1H 4GSW
1URR 2OVG 2Y9F 3I4O 3MBT 3QMX 3SSQ 4A6S 4HBX
1W53 2PMR 2Y9G 3ID1 3MCB 3QWG 3SSU 4A75 4HE6
1WM3 2PWO 2Y9R 3ID2 3MCE 3QWS 3SWY 4A9F 4HK2
1WYX 2PZV 2YEL 3ID3 3MHE 3R27 3T6F 4ABM 4HTH
1Y0M 2QCB 2YH5 3ID4 3MP9 3R3M 3T6L 4AEQ 4HTI
1YO3 2QCP 2YIZ 3IG9 3MSH 3R45 3T8N 4AGH 4HTJ
1Z96 2QJL 2ZWM 3IGE 3N27 3R69 3T8U 4B27 4HX8
2A26 2R6Q 3AXC 3IPT 3N4W 3R85 3TDM 4B6X 4IOG

while (b) the scatter plot of corr(bNMA,bANMr2) and corr(bNMA,bSTeM), respectively.
The average correlation over all proteins is 0.44 for corr(bNMA,bANM), 0.71 for
corr(bNMA,bANMr2), and 0.89 for corr(bNMA,bSTeM). STeM clearly outperforms both
ANMr2 and ANM in matching with NMA, having a high average correlation
in mean-square fluctuations with those of NMA. The results thus underscore the
importance of including multi-body interactions for a finer portrait of protein
fluctuation dynamics.

5.3 Conclusions

Protein mean-square fluctuations and conformation changes are two closely related
aspects of protein dynamics. However, in the past, two separate groups of models
were needed to best explain protein mean-square fluctuations or conformation
changes. Specifically, the best models for predicting mean-square fluctuations
cannot predict conformation changes, and the models that can predict conformation
changes do not have the best performance in predicting mean-square fluctuations.
There is thus an obvious gap between the models that work well in predicting one
aspect of the dynamics and those in another.

Since protein mean-square fluctuations and conformation changes are two
closely related dynamic phenomena and share a similar physical origin, we reasoned
that models based on a physically more accurate potential should be able to bridge
the gap and predict both aspects of the protein dynamics well. Indeed, by using a
Gō-like potential, we have successfully developed a spring tensor model (STeM)
that is able to singly predict well both mean-square fluctuations and conformation
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changes. Specifically, STeM performs equally well in B-factor predictions as GNM
and has the ability to predict the directions of fluctuations as ANM.

The new STeM model does come with a cost. As is seen, the derivation process
of the Hessian matrix in STeM is much more complex than models using only two-
body Hookean potentials, such as those used in ANM. However, the introduced
complexity in the potential is necessary in resolving the aforementioned gap that is
mainly due to over-simplified potentials and in providing a single, unified model for
protein dynamics. Moreover, the derivation process, though more complex, needs to
be done only once.

Examining the different interaction terms in the GNo potential and their con-
tributions to the agreement with experimental B-factors provides further benefits.
Along the way, we have discovered a physical explanation for why the distance-
dependent, inverse distance square (i.e., 1

r2
) spring constants perform better than

the uniform ones. The van der Waals interaction term in the potential naturally
renders inverse distance square spring constants! By including the bond bending
and torsional interactions and their contributions to the improvement in B-factor
predictions, the STeM model confirms the importance of 3-body and 4-body poten-
tials. The importance of multi-body potentials is made even more evident when their
contribution to the interaction spring tensor is examined – the multi-body potentials
are shown to be necessary in providing proper constraints on residue fluctuations,
even transversely. In [28] we noted that the 3-body and 4-body potentials introduced
through bond bending and torsional interactions in the coarse-grained STeM model
only scratched the surface of the full extensity of the multi-body potentials. Indeed,
results from all-atom STeM where the multi-body interactions are most accurately
represented demonstrate that all-atom STeM has reached an even higher correlation
with NMA in predicting mean-square fluctuations, yet without the need for energy
minimization.

Finally, since STeM takes into account bond bending and torsional interactions,
it is expected that it should further distinguish itself in studying protein dynamics
where a correct modeling of bond bending or torsional rotations is critical, such as
in predicting S2 order parameters of NMR structures.

5.4 Methods

In this section we present the derivations of the Hessian matrix for a coarse-
grained model from a Gō-like potential [23]. The derivations are mostly the same
as what appeared in [28]. In addition, we show how the core idea of STeM can be
extended to derive the STeM Hessian matrix for an all-atom model using an all-atom
potential.
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5.4.1 The Gō-Like Potential

The Gō-like potential in [23] takes the non-native and native (equilibrium) con-
formations as input and it can be divided into four terms. The first term of this
Gō-like potential (defined as V1 for later use) preserves the chain connectivity. The
second (V2) and third terms (V3) define the bond angle and torsional interactions
respectively and the last term (V4) is the nonlocal interactions. The Gō-like potential
has the following expression:

V .X;X0/ D
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bonds
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dihedral
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(5.11)

In Eq. (5.11), r and r0 represent respectively the instantaneous and equilibrium
lengths of the virtual bonds between the C˛ atoms of consecutive residues. Similarly,
the � (�0) and � (�0) are respectively the instantaneous (equilibrium) virtual bond
angles formed by three consecutive residues and the instantaneous (equilibrium)
virtual dihedral angles formed by four consecutive residues. The rij and r0,ij

represent respectively the instantaneous and equilibrium distances between two non-
consecutive residues i and j.

The Gō-like potential in Eq. (5.11) includes several force parameters
(Kr, K� , K.1/

¥ , K.3/
¥ and ") and the values of these parameters are taken directly from

[23] without any tuning. The values of these parameters are: KrD 100", K� D 20",
K.1/
¥ D ", K.3/

¥ D 0.5" and "D 0.36.

5.4.2 Anisotropic Fluctuations from the Second Derivative
of the Gō-Like Potential

Similar to ANM, STeM has a 3N � 3N Hessian matrix that can be decomposed
into N �N super-elements. Each super-element in STeM, Hi,j, is a summation of
four 3� 3 matrices. The first 3� 3 matrix is the contribution from bond stretching.
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The second and third 3� 3 matrices are the contributions from bond bending and
torsional rotations respectively. The fourth 3� 3 matrix is the contribution from
nonlocal contacts.

H i;j D

2

6
6
6
4

@2V1.r;r0/

@Xi @Xj

@2V1.r;r0/

@Xi @Yj

@2V1.r;r0/

@Xi @Zj

@2V1.r;r0/

@Yi @Xj

@2V1.r;r0/

@Yi @Yj

@2V1.r;r0/

@Yi @Zj

@2V1.r;r0/

@Zi @Xj

@2V1.r;r0/

@Zi @Yj

@2V1.r;r0/

@Zi @Zj

3

7
7
7
5
C

2

6
6
6
4

@2V2.�;�0/

@Xi @Xj

@2V2.�;�0/

@Xi @Yj

@2V2.�;�0/

@Xi @Zj

@2V2.�;�0/

@Yi @Xj

@2V2.�;�0/

@Yi @Yj

@2V2.�;�0/

@Yi @Zj

@2V2.�;�0/

@Zi @Xj

@2V2.�;�0/

@Zi @Yj

@2V2.�;�0/

@Zi @Zj

3

7
7
7
5
C

2

6
6
6
4

@2V3.�;�0/

@Xi @Xj

@2V3.�;�0/

@Xi @Yj

@2V3.�;�0/

@Xi @Zj

@2V3.�;�0/

@Yi @Xj

@2V3.�;�0/

@Yi @Yj

@2V3.�;�0/

@Zi @Zj

@2V3.�;�0/

@Zi @Xj

@2V3.�;�0/

@Zi @Yj

@2V3.�;�0/

@Zi @Zj

3

7
7
7
5
C

2

6
6
6
4

@2V4.rij;r0;ij /
@Xi @Xj

@2V4.rij;r0;ij /
@Xi @Yj

@2V4.rij;r0;ij /
@Xi @Zj

@2V4.rij;r0;ij /
@Yi @Xj

@2V4.rij;r0;ij /
@Yi @Yj

@2V4.rij;r0;ij /
@Yi @Zj

@2V4.rij;r0;ij /
@Zi @Xj

@2V4.rij;r0;ij /
@Zi @Yj

@2V4.rij;r0;ij /
@Zi @Zj

3

7
7
7
5

(5.12)

The Hessian matrix is the second derivative of the overall potential (Eq. (5.11)). Let
us first consider the first term of the Gō-like potential and let (Xi, Yi, Zi) and (Xj, Yj,
Zj) be the Cartesian coordinates of two consecutive residues i and j.

V1 .r; r0/ D Kr.r � r0/2

D Kr

�h�
Xj �Xi

�2 C �
Yj � Yi

�2 C �
Zj �Zi

�2
i1=2 � r0

	 2 (5.13)

The first and second partial derivatives of V1 with respect to the X-direction of
residue i are

@V1

@Xi
D �2Kr

�
Xj �Xi

� �
1 � r0=r� (5.14)

@2V1

@X2
i

D 2Kr

�
1C r0�Xj �Xi

�2
=r3 � r0=r

�
(5.15)

We will get similar results for the Y – and Z-directions of residue i. Since we focus
only on the equilibrium fluctuations, we can have rŠ r0 at equilibrium and the
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first and second partial derivatives of V1 can be further simplified to the following
expressions.

@V1
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D 0 (5.16)
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In a similar way, the second cross-derivatives have the following form:
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Equations (5.17) and (5.18) give the elements of the first 3� 3 matrix of the super
element Hij in Eq. (5.6). For the diagonal super elements Hii, Eqs. (5.17) and (5.18)
are substituted by the following:
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Now let us consider the second term of the potential in Eq. (5.11) and let
(Xi,Yi,Zi), (Xj,Yj,Zj) and (Xk,Yk,Zk) be the Cartesian coordinates of three consecutive
residues i, j and k. Suppose � is the virtual bond angle formed by these three
consecutive residues. Since the second term of the potential is V2DK� (� � �0)2,
the first and second partial derivatives of V2 are
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Since � equals �0 at equilibrium, @
2V2
@X2i

can be further simplified as
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Likewise, @2V2
@Xi @Xj

becomes
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Let pD (Xi�Xj, Yi�Yj, Zi �Zj) and qD (Xk �Xj, Yk �Yj, Zk �Zj) and define G as
the following.
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The partial derivatives of � are
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The derivative of G is
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We can also get @G
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Combined Eqs. (5.23), (5.27) and (5.30), we can get the following formula.
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Similarly, Combined Eqs. (5.24), (5.27), (5.28), (5.30), and (5.31), the second cross-
derivative @2V2

@XiXj
becomes
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Following a similar approach, we can get @2V2
@Xj Xk

and @2V2
@XkXi

and these second
cross-derivatives form the elements of the second 3� 3 matrix of the super element
Hij in Eq. (5.6).

Due to the complexity of the derivation process of the Hessian matrix for the
third (dihedral angle) term of the potential, we omit the derivation process here. The
complete derivation can be found in [28].

Finally, let’s consider the final (non-local contact) term.
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A Taylor expansion will give us the following form.
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Equation (5.36) has the same harmonic form as the first term but with a different
force constant, so the derivation process is the same as the first term. Therefore, we
give only the derivation result here.
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After combining the Hessian matrices from all four terms, we can calculate the
pseudo inverse of the final Hessian matrix H. The mean square displacement h�r2i i
and inter residue correlation h�ri ��rji can be calculated by summing the elements
over the X, Y and Z directions.
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h�r2i i D
kBT

�

�
H C

3i�2;3i�2 CH C
3i�1;3i�1 CH C

3i;3i

�
(5.38)

h�r i ��rj i D kBT

�

�
H C

3i�2;3j�2 CH C
3i�1;3j�1 CH C

3i;3j

�
(5.39)

5.4.3 Extending STeM to an All-Atom Model

STeM [28] was originally based on the Gō potential [29, 30] and was applied to
coarse-grained systems. Here we show how STeM can be extended to all-atom
models. Consequently, the force field parameters used in STeM for the interactions
among the atoms are adopted from an all-atom force field, for example, the
Charmm22 force field.

All-atom STeM is different from NMA. Though all-atom STeM share some
similarity with NMA, such as both are all-atom models and can be applied to an
equilibrated structure to compute normal modes, STeM is different from NMA in
the sense that it is fully spring-based models and does not consider the effect of
inter-atomic forces. Indeed, as in Gō model, STeM assumes the input structure is at
equilibrium, and in addition, the inter-atomic forces are all zero. NMA, however,
does not make the second assumption. NMA has been often applied to locally
energetically-minimized structures, where the systems are at equilibrium, but the
inter-atomic forces are clearly not zero. Thus, the difference between NMA and
STeM mostly represents the effect of inter-atomic forces on a system.

All-atom STeM is also different from all-atom ANM (anisotropic network model
[4]). In ANM, atoms interact through two-body Hookean springs only. In STeM,
atoms interact via generalized spring tensors (thus the name STeM – spring tensor
model) and include three-body and four-body interactions. STeM and ANM do
share some similarity. Both models are purely spring-based models and do not take
into account the effect of inter-atomic forces when studying protein fluctuations and
conformation changes. STeM is especially similar to a particular variant of ANM,
the ANMr2, or ANM using 1

r2
as spring constants, as was thoroughly investigated

in [10]. This is because, the effect of non-bonded terms in STeM, especially the van
der Waal interactions, is similar to 1

r2
springs [28].

In the following, we will show how STeM is a close approximation of NMA, and
how ANM is a further approximation of STeM.

5.4.3.1 The Close Relationship Between NMA to All-Atom STeM

The close relationship between STeM and NMA is illuminated in the following
derivation of STeM Hessian matrix.
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First, let us consider the three-body interactions, specifically the bond angle
interactions. Let � D∠ ijk be the instantaneous angle formed by three sequential
atoms i, j, and k. The bond angle potential of atoms i, j, and k is defined as V� D
1
2
k� .� � �0/2, where k� is the bond angle spring constant, �0 is the equilibrium

angle. The block Hessian matrix H� for the angle interaction is a 9� 9 second
derivative matrix of V� with respect to x, y and z coordinates of atoms i, j, and
k. Write out one component @V�

@Xi @Yk
of H� as follows:

@2V�

@Xi@Yk
D @

@Xi

�
@V�

@�

@�

@Yk

�

D @2V�

@�2
@�

@Xi

@�

@Yk
C @V�

@�

@2�

@Xi@Yk

D k� � @�
@Xi

@�

@Yk
C f� � @2�

@Xi@Yk
(5.40)

where f� D @V�
@�

is the bending force (which actually is a torque). Notice that Eq.
(5.40) is a combination of the physical terms (k� and f� ) and geometric terms (the
rest of the terms), which represent the projection of physical interactions into a
particular coordinate system. In a similar fashion, the rest of the elements of the
block hessian matrix H� can be written out using k� and f� . Finally, the block
Hessian matrix H� can be rewritten as a summation of two terms:

H � D H NMA
� D k� �H � jK� C f� �H � jf� (5.41)

where H
�

ˇ
ˇk�

and H
�

ˇ
ˇf�

are 9� 9 matrice that are fully determined by protein geom-

etry and atom coordinates, where k� is a force field parameter and f� D k� (� � �0)
is the torque acting on the bond angle. In STeM, the bending torque f� is assumed
to be 0, i.e., f�! 0. This simplifies the H� in Eq. (5.41) and it becomes:

H STeM
� D k� �H

�

ˇ
ˇk�
: (5.42)

Now for the four-body interactions. Let H� be the 12� 12 block Hessian matrix

for the dihedral interaction among four atoms i, j, k, and l. Let k� D @2V
@�2

and f� D
@V
@�

be the dihedral spring constant and bending force (torque), respectively. Similar
to Eq. (5.41), the Hessian matrix H� can be written as a function of k� and f� :

H � D H NMA
� D k� �H

�

ˇ
ˇK�
C f� �H

�

ˇ
ˇf�
: (5.43)

Since V(�)DK�(1� cos(n(� ��0))) in most force fields, where K� and �0 are

force field parameters and n is the multiplicity, k� D @2V
@�2
D n2K� cos .n .� � �0//.

In STeM, the torque f� is assumed to be zero. In addition, STeM assumes that the
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input structure has the equilibrium values for all the dihedral angles, i.e., �D�0.
Therefore,

H STeM
� D k� �H

�

ˇ
ˇK�
D n2K� �H

�

ˇ
ˇK�
: (5.44)

Improper is a special type of dihedral interactions. Improper potential takes the
form of V( )DK ( � 0)2, where K and  0 are force field parameters. To
simplify notations for improper interaction, we define H

 

ˇ
ˇH 

in the same way as

H
�

ˇ
ˇH�

, and its spring constant k D @2V . /

@ 2
D 2K . Therefore,

H STeM
 D k �H

 

ˇ
ˇK 
D 2K �H

 

ˇ
ˇK 

: (5.45)

Likewise, the Hessian matrix Hl for two-body interaction between a pair of atoms
i and j can be determined: H l D kl �H

l

ˇ
ˇkl
C fl �H

l

ˇ
ˇfl

. In STeM, the force term

is again assumed to be zero. As for the first term, there are three types of two-body
interactions in an all-atom potential, i.e., bond stretching, van der Waals interactions,
and electrostatic interactions, and thus different kl. For the bond stretching potential,
or Vbond, which is usually expressed as VbondDKbond(r� r0)2, we have

kbond D @2Vbond

@r2
D 2Kbond: (5.46)

For van der Waal term, whose potential is VvdW D �
��

r0
r

�12 � 2� r0
r

�6
�

, where � and

r0 are force field constants. We have

kvdW D @2VvdW

@r2
D 12�

r2

�

13
�r0

r

�12 � 7
�r0

r

�6
�

: (5.47)

Lastly, for the electrostatic term, since Velec D 332qi �qj
rD

, where qi is the partial charge
of atom i, and D is the dielectric constant and is set to be 80, kl is thus:

kelec D @2Velec

@r2
D 2 � 332qi � qj

80r3
D 8:3qi � qj

r3
: (5.48)

Finally, the spring constant kl for two-body interaction is

kl D kbond C kvdW C kelec: (5.49)

This spring constant may become negative. In that case, we set kl to be zero to avoid
producing negative eigenvalues from the STeM Hessian matrix.

Finally, let N be the number of atoms, the 3N � 3N full Hessian matrix HNMA for
the whole system can be written as a summation of a spring constant related term
HNMA
spr and a force/torque related term HNMA

frc :
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H NMA D H NMA
spr CH NMA

frc ; (5.50)

where HNMA
spr and HNMA

frc are

H NMA
spr D

X

�2‚
k�H

�

ˇ
ˇk�
C

X

�2ˆ
k�H

�

ˇ
ˇk�
C

X

 2‰
k H

 

ˇ
ˇk 
C

X

l2L
klH

l

ˇ
ˇkl
; (5.51)

H NMA
frc D

X

�2‚
f�H

�

ˇ
ˇk�
C

X

�2ˆ
f�H

�

ˇ
ˇk�
C

X

 2‰
f H

 

ˇ
ˇk 
C

X

l2L
flH

l

ˇ
ˇkl
; (5.52)

where ‚, ˆ, ‰, and L are the sets of angular, dihedral, improper and pairwise
interactions.

STeM assumes that all forces and torques are zero. Therefore,

H STeM � H NMA
spr : (5.53)

It is approximately equal since STeM additionally assumes that the input structure
has the equilibrium values for the dihedral potentials, while NMA does not.
Specifically, HSTeM is,

H STeM D
X

�2‚
k�H � jK� C

X

�2ˆ
k�H �jK� C

X

 2‰
k H  jK C

X

l2L
klH ljKl (5.54)

Our original work on STeM [28] details how HSTeM can be computed. To
compute HNMA, one may use software packages such as gromacs [31] or tinker
[27].

5.4.3.2 The Relationship Between STeM and ANM, the Role
of Multi-body Interactions

ANM [4] is a widely-used coarse-grained model for proteins. A particular variant
of ANM, ANMr2, which uses 1

r2
as spring constants, was thoroughly investigated

in [10] and was shown to have better performance than the regular ANM.
ANM, particularly ANMr2, is closely related to STeM in that the former is a

simplification of the latter [28]. STeM is a close approximation of the NMA, and
ANM/ANMr2 is a further approximation of STeM. STeM ignores the contributions
of inter-atomic forces that are considered in NMA (Eq. (5.50)), while ANMr2/ANM
takes into account only the two-body interactions and ignores the contributions
of multi-body interactions (bond angle and torsional angle interactions) that are
considered in STeM.
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5.4.4 The Protein Sets Studied

To evaluate the STeM model, we apply it to compute B-factors and to study protein
conformation changes and compare the results with those computed from ANM and
GNM. For B-factors computations, the protein dataset is from [32] and contains 111
proteins. Two proteins, 1CYO and 5PTP, are removed from the dataset because they
no longer exist in the current Protein Data Bank [33]. The proteins in the first dataset
all have a resolution that is better than or equal to 2.0 Å. For conformation change
studies, the dataset is from [20], which contains 20 pairs of protein structures.
Each pair of protein structures has significantly large structure difference from each
other.

5.4.5 Evaluation Techniques

We used the same evaluation techniques as have been applied before [20, 32].
Specifically, the following three numerical measures are used.

5.4.6 The Correlation Between the Experimental
and Calculated B-Factors

The linear correlation coefficient between the experimental and calculated B-factors
is calculated using the following formula.

	 D
XN

i
.xi � x/ .yi � y/


XN

i
.xi � x/2

XN

i
.yi � y/2

�1=2 (5.55)

where xi and yi are respectively the experimental and calculated B-factors of the
C˛ atom of residue i and x and y are the mean values. N is the number of
residues.

5.4.7 The Overlap Between the Experimental Observed
Conformation Changes and the Calculated Modes

The overlap measures the directional similarity between a conformation change and
a calculated mode. The formula for calculating the overlap is
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I D

ˇ
ˇ
ˇ
ˇ

X3N

i
ei ri

ˇ
ˇ
ˇ
ˇ


X3N

i
e2i

X3N

i
r2i

�1=2 (5.56)

where ei is the relative displacement of residue i in a selected mode e and ri is the
conformation displacement of residue i.

5.4.8 The Correlation Between the Experimental Observed
Conformation Changes and the Calculated Modes

The correlation measures the magnitude similarity between a conformation change
and a calculated mode. The formula used for calculating the correlation is the same
as Eq. (5.55), with different meaning for xi and yi.

	 D
XN

i
.xi � x/ .yi � y/


XN

i
.xi � x/2

XN

i
.yi � y/2

�1=2 (5.57)

where xi is the magnitude of the displacement of residue i in the conformation
change and yi is the magnitude of the displacement of residue i in the selected mode.
x and y are the corresponding mean values.
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