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Abstract

The growing interest for comparing protein internal dynamics owes much to the realisation that protein function can be accom-
panied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements,
those aspects of protein flexibility and dynamics that are functionally oriented should be subject to evolutionary conservation. Ac-
cordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to
sequence and structural alignments. Here we provide an account of the progress that has been made in recent years towards devel-
oping and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of
the structure–function relationship.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades enormous efforts have been made to clarify the sequence → structure → function rela-
tionships for proteins and enzymes. In particular the sequence → structure connection has been extensively probed
by dissecting the detailed physico-chemical mechanisms that assist and guide the folding process of several proteins
[29,42,43,84]. The more general aspects of this relationship are, however, better captured by analysing the degenerate
mapping between the ensembles of naturally-occurring protein sequences and their corresponding folds [26–28,44,
67,69,84,99]. For instance, the current ∼85,000 entries can be clustered in about 20,000 non-redundant sequence sets
but cover only 1500 distinct structural folds [113,122].

The introduction of general quantitative schemes for comparing, or aligning, protein sequences and protein struc-
tures has played a crucial role for framing the observed many-to-one sequence–structure relationship in the context
of molecular evolution [117,139]. In particular, by following the impact that evolutionary sequence divergence has
on native structural changes [28] it has been possible to identify general properties of peptide chains, amino acid
hydrogen-bonding patterns, thermodynamic stability etc. that govern the sequence–structure relationship by con-
straining the repertoire of viable structural changes that are evolutionary accessible [27,34,95,96,101,147,156,170,
176].
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As a result, remote evolutionary relationships are more confidently obtained from structure-based comparative
methods than sequence based ones.

Besides the above general constraints, additional and stronger ones are imposed by functional requirements. In fact,
it has long been known that enzymes that have evolutionarily diverged and that catalyse different reactions, tend to
conserve very precisely functional structural elements and the location of the active site where different amino acids
can be recruited for different function [10,28,116,123,169]. More recently it has also emerged that specific features
of protein internal dynamics that impact biological activity and functionality can also be subject to evolutionary
conservation [21,87,137,181,182].

By analogy with the sequence–structure case, one may therefore envisage that quantitative methods apt for com-
paring function-oriented properties in different proteins could advance the capability of detecting protein evolutionary
relationships that may be elusive to sequence- or structure-based investigations.

Here we shall review recent studies which focused on the comparison of protein internal dynamics, which is
arguably one of the many aspects that often, though not always, assist or influence protein function over a wide range
of time scales [14,37,104]. For example, concerted structural movements in enzymes, either “innate” or triggered by
ligand binding, have been argued to be important for enzymes to achieve a catalytically-competent state, promote
catalytic efficiency, for allosteric signal propagation and protein–protein interactions [1,11,12,24,32,37,38,52,55,59,
60,71,87,102,106,107,110,114,124,126,132,137,155,160,168,179,181,183].

We shall accordingly report on the progress that has been made in recent years towards developing and exploiting
quantitative numerical strategies for comparing the internal dynamics of proteins and explore its connection with
structural and functional similarities.

The material presented in the review is organised as follows. Because these approaches are virtually all based
on numerical characterisations of protein internal dynamics we shall first provide a self-contained methodological
summary of the theoretical/computational techniques used to characterise and compare protein internal dynamics.
Next we shall overview the contexts where dynamics-based comparisons, with different resolution and scope, have
been applied. We shall further provide an in depth discussion of a number of selected instances where dynamics-
based similarities have been detected within structurally-heterogeneous members of specific protein families, and
even across protein families.

2. Comparing protein internal dynamics: Methodological aspects

In this section we provide a self-contained overview of the quantitative numerical approaches employed to char-
acterise and compare the internal dynamics of proteins. In particular, we first review the essential dynamics analysis
techniques which are commonly applied to atomistic molecular dynamics simulations or phenomenological coarse-
grained models (elastic networks) to single out the collective degrees of freedom that best account for protein’s internal
motion in thermal equilibrium. Next we shall discuss how the essential dynamical spaces and other dynamics-related
quantities can be used for comparative purposes.

2.1. Protein internal dynamics: Essential dynamics analysis of MD trajectories

The wealth of information produced by extensive atomistic molecular dynamics (MD) simulations of globular
proteins is typically described and rationalised by identifying the few collective degrees of freedom that best capture
the internal protein dynamics. Arguably, the most commonly used technique is represented by the principal component
analysis [48] of amino acid pairwise displacements.

This technique relies on the spectral decomposition of the matrix of pairwise correlations of the displacements of
amino acids, represented by their Cα atoms, from their reference positions.

In the following we shall indicate with ri (t) the three-dimensional position at simulation time t of the ith Cα atom
and with δr(t) ≡ ri (t) − 〈ri〉 the associated vector displacement from the average reference position. A generic entry
of the matrix of pairwise displacement correlations, C, is accordingly defined as

Cij,μν = 〈
δri,μ(t)δrj,ν(t)

〉
(1)
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where δri,μ(t) is the μth Cartesian component of the vector displacement of the ith amino acid and 〈 〉 denotes the
average over simulation time. For proteins consisting of N amino acids, the symmetric covariance matrix C has linear
size equal to 3N .

It is important to notice that the matrix element of Eq. (1) can be equivalently rewritten as:

Cij,μν =
3N∑
l=1

λlv
l
i,μvl

j,ν (2)

where λ1, λ2, . . . are the eigenvalues of C ranked by decreasing magnitude and v1,v2, . . . are the corresponding
orthonormal eigenvectors.

Because the protein overall mean square fluctuation is given by∑
i,μ

〈
δri,μ(t)2〉 = ∑

i,μ

Cii,μμ =
∑

l

λl (3)

one has that top ranking eigenvectors of C embody the independent degrees of freedom that most contribute to the
internal dynamics of the protein. Indeed, for most globular proteins of 100–200 amino acids, the top 10 eigenvectors
suffice to capture most of the protein mean square fluctuation [48]. For this reason, considerations are typically re-
stricted to the linear space spanned by the top eigenvectors of C, which is commonly termed the essential dynamical
space [5].

The structural deformations entailed by the essential eigenvectors, or essential modes, are typically found to em-
body concerted, collective displacements of protein subportions consisting of several amino acids [48,162]. As a
matter of fact, the large-scale collective conformational changes that many proteins and enzymes need to sustain in
order to carry out their biological functionality have been shown to lie in the essential dynamical space [3,33,40,105,
128,141,150,158,181].

These observations provide an a posteriori justification for considering the essential dynamical spaces as providing
key information into functionally-oriented aspects of proteins.

We conclude by noting that one relevant technical point of the essential dynamics analysis regards the definition of
the reference amino acids positions from which the instantaneous displacements δr are calculated. For proteins that
have an overall rigid-like character, these positions can be obtained by averaging the conformers sampled by the MD
simulation after optimally superposing them. The structural superposition is necessary to remove the overall rotations
and translations of the molecules. It is important to stress that this step is not trivially accomplished when proteins
have an appreciable internal flexibility character (e.g. due to the presence of mobile subdomains) [184]. In this case,
to avoid artefactual results, it is crucial to identify the correct frame of reference for describing and computing the
internal structural fluctuations of the protein, see e.g. the discussion of Refs. [60,61] and related supporting material.

However, it must be noted that the relative displacements of domains in multidomain proteins can be so large that
protein movements cannot be reliably described by a linear superposition of a limited number of essential dynamical
spaces, even if obtained with the above-mentioned procedure. A prototypic example is offered by the relative rotation
of protein domains by a finite angle. In this case the directions of instantaneous rotations of the two extreme positions
can project very poorly on the difference vector of the latter (see Fig. 3 in Ref. [151]). In such cases the salient degrees
of freedom of protein internal dynamics can be identified by decomposing the protein of interest into quasi-rigid
domains [2,16,54,56,66,79,131,175] and next considering their relative roto-translations [109], see also Section 3.9.

2.2. Essential dynamical spaces from elastic network models

The collective character of the top eigenvectors of the covariance matrix C obtained from atomistic MD simulations
suggests that the essential dynamical spaces could be reliably identified by coarse-grained protein models.

This observation, which was stimulated by the seminal work of M. Tirion [162] has in fact lead to the introduction
of the well-known elastic network models which, despite adopting a simplified description of a protein’s structure
and its native amino acid interactions, can reliably identify the essential dynamical spaces of globular proteins with a
negligible computational expenditure [7,8,33,63,100,102,157].

In these approaches, each amino acid is described by one or few centroids (e.g. the Cα atom for the main chain [7]
and an additional centroid for the side chain [102]) the model potential energy is constructed by introducing quadratic
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penalties for the deviations from the native values of the distance of all pairs of centroids that are in contact in the
native state. Accordingly, for a protein consisting of N amino acids, the resulting potential energy has the form:

U = 1

2

∑
ij,μν

δri,μMij,μνδrj,ν (4)

where M is a symmetric matrix of linear size 3N . In the following we shall indicate with τ0, τ1, . . . , τ3N the eigenval-
ues of M ranked for increasing magnitude, and with w0, w1, . . . ,w3N the associated orthonormal eigenvectors. The
eigenvalues {τl} are all positive except for the six attributed to the global rotations and translations of the molecule. It
is evident that Eq. (4) bears strong analogies with the normal mode analysis of proteins [85,162].

Because of the quadratic character of the model potential energy of Eq. (4) canonical equilibrium properties of the
elastic network can be calculated exactly. In particular, a generic entry of the model covariance matrix C is given by

Cij,μν = κBT M̃−1
ij,μν (5)

where κBT is the thermal energy at the temperature of interest, T , and the tilde superscript denotes the pseudoinversion
operation, i.e. the removal of the zero-eigenvalue space prior to the inversion of M . Equivalently, C can be written as

Cij,μν =
∑′

l

κBT

τl

wl
i,μwl

j,ν (6)

where the prime indicates the omission of the eigenspaces associated to the zero eigenvalues. The above expression
clarifies that the degrees of freedom that most account for the proteins’ fluctuations in thermal equilibrium correspond
to the modes of protein deformation associated to the smallest eigenvalues, i.e. those that cost least energy to excite.

If the proteins dynamics were described by an overdamped Langevin scheme, these low-energy modes would also
be those having the slowest relaxation time. Although the harmonic character of the near-native free energy well
and the white noise Langevin description apply only limitedly to proteins [15,64,72,97,104,127], the observation is
qualitatively consistent with the fact that collective low-energy modes in proteins occur over long time scales (and
hence are occasionally referred to as “low-frequency” modes). These observations motivate the practice, adopted in
this review too, of regarding the principal components of equilibrium structural fluctuations as embodying the salient
internal dynamical properties.

We conclude by mentioning that in recent years alternative formulations of elastic network models have been
proposed including versions based on the matching of observables obtained from atomistic MD simulations [81] and
on the use of internal coordinates, which are commonly used in normal mode analysis too [53,90,91,98,118].

2.3. Anharmonicity of proteins free energy landscape

The viability of elastic network models to capture the salient traits of protein conformational fluctuations is jus-
tified a posteriori by the good accord between the essential covariance matrices of elastic network models and of
extensive atomistic MD simulations. For example in Ref. [102] it was compared the covariance matrices of HIV-1
protease with a bound ligand obtained from a 14-ns MD simulation with an atomistic force-field and explicit solvent
and the beta-Gaussian elastic network model, which employs two centroids per amino acids (for main- and side-chain,
respectively). The linear correlation coefficient of the ∼20,000 corresponding distinct entries of the two matrices was
significant (equal to 0.8) like the consistency of the two sets of essential dynamical spaces. A more recent example
of the good accord of protein structural fluctuations computed with elastic network models and MD atomistic sim-
ulations is provided by the work of Romo and Grossfield on GPCRs membrane proteins [142]. This study showed
that a suitably-parametrised model can match the essential dynamical spaces and their relative weight observed in
microsecond-long simulations.

This agreement is noteworthy in consideration of the highly complex free energy landscape explored by folded
proteins can explore in thermal equilibrium. In fact, this landscape presents several tiers of local minima [45,46,
171] with low barriers (compared to the thermal energy κBT ) separating conformational states with local structural
differences such as the rotameric state of a sidechain while large ones separate conformational ensembles with major
subdomains rearrangement, such as for open and closed conformation of certain enzymes. In turn, the hierarchical
organisation of these minima reflects in a broad range of time-scales, from the ps to the ms and beyond, over which
the mentioned structural changes can occur as observed in NMR and single-molecule experiments [14,59,60,104,173].
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From these general considerations and from the detailed analysis of the protein conformational substates visited
over MD trajectories of hundreds of ns [128,138] it emerges that the harmonic approximation on which elastic network
models rely may be a highly simplified parametrisation of even the near-native free energy landscape.

While this limitation, that may be more or less severe depending on the molecule rigidity, must be clearly be
borne in mind, it should be noted that the free-energy landscape of a few proteins has been shown to be endowed
with particular properties that make the harmonic, or quasi-harmonic [57,65,73,86] free-energy approximation still
informative even when dealing with major and slow conformational changes. Specifically, computational studies of
lysozyme [76], protein G [127] and adenylate kinase [128] has clarified that the principal directions of the free energy
minima associated to the substates populated by each of these proteins are very consistent with each other and also
very similar to the difference vectors connecting the substates themselves. This indicates that, despite their structural
differences, different substates of the same protein tend to have very similar modes of conformational fluctuations and
that the latter, in turn, predispose the observed conformational changes between substates. Indeed, by analysing and
comparing the covariance matrices of longer and longer MD trajectories of protein G [127], it was seen that while
the trace of the matrix tended to increase (due to the breadth of visited conformational space), the consistency of the
essential spaces remained highly significant.

From these results it emerges that the essential dynamical spaces calculated from a relatively short MD simulation
or from an elastic network model, would still bear information on the conformational fluctuations sustained by the
proteins over time-scales where the harmonic approximation is invalid. The fact that these considerations might hold
more in general and not only for the proteins investigated in Refs. [76,127,128] is reinforced by the fact that the
difference vector bridging pairs of different protein conformers (such as open and closed forms of several enzymes)
has been shown to overlap significantly with the essential dynamical spaces calculated from elastic network models
for either conformer [33,78,105,124,158]. Analogous conclusions were drawn more recently by Liu et al. who com-
pared the consistency of essential dynamical spaces of cyanovirin-N obtained from atomistic simulations of varying
duration [88].

2.4. Essential dynamical spaces of protein sub-portions

For the purpose of comparing the essential dynamical spaces of proteins with different length and/or architecture
it is necessary to identify the essential dynamical spaces of specific protein subparts.

This is straightforward to do in the context of atomistic molecular dynamics simulations. In fact, one simply
needs to restrict considerations to the amino acids of interest when calculating the average reference structure and the
covariance matrix. The top eigenvectors of this “reduced” covariance matrix (whose entries are clearly not equal to
the corresponding ones in the matrix computed for the full protein) accordingly provide the generalised degrees of
freedom that best capture the internal motion of the amino acid of interest.

A different approach is however needed for elastic network models. In this case, the reduced covariance matrix
of the amino acids of interest must be obtained by the thermodynamic integration of the degrees of freedom of the
remainder amino acids. For completeness of notation we assume that the N protein amino acids have been grouped
in two sets, a and b. Set a gathers all the n amino acids of interest. The interaction matrix M , after the row/columns
reordering following the amino acid groupings, can be partitioned in blocks as follows:

M =
(

Ma V

V T Mb

)
(7)

where the submatrices Ma and Mb capture the elastic network interactions involving pairs of amino acids in set a

and b, respectively, matrix V contains the elastic network couplings of amino acids in the two sets and T denotes
the transpose. Matrices Ma and Mb are square and symmetric (of linear size 3n and 3(N − n), respectively) while
matrix V is, in general, rectangular.

Because of the quadratic character of the energy function U it is possible to calculate exactly the reduced matrix
effective interactions for amino acids in set a which is equal to:

Meff
a = Ma − V M−1

b V T (8)

and finally, the covariance matrix of set a is obtained by taking the pseudoinverse of Meff
a [19,65,105]. It is important

to point out that the second term in the right-hand side of the above equation allows for taking into account the
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influence of the remaining amino acids from those of interest. This term is also crucial to ensure that the dynamics of
amino acids in set a is described in the proper reference system where the roto-translations of set a alone (and not the
whole protein) are extracted.

We conclude by mentioning that, in the same spirit of Eq. (8), one can obtain effective interaction (and covariance)
matrices for few generalised degrees of freedom that depend linearly on amino acid Cartesian coordinates. One such
example is offered by the study of Ref. [17] where the structural fluctuations of a large set of EF-hand proteins was
studied in terms of the relative motion of the axes of their four helices. A further relevant avenue where the degrees-of-
freedom integration can be profitably applied is represented by proteins embedded in a constraining matrix. A notable
instance is represented by membrane proteins whose conformational plasticity can have important functional implica-
tions [39,145]. For such proteins, Romo and Grossfield [142] have recently shown that Eq. (8) can be generalised and
used to define effective inter-amino acid interactions which taken into account the influence of embedding bilayer.

2.5. Measures of similarities of two sets of essential dynamical spaces

The information about protein internal dynamics that can be gleaned by applying the methods described in the
previous section, can be used in quantitative approaches for the dynamics-based comparison, or alignment of proteins.

We start by discussing the case where the two proteins of interest, A and B , are so similar that sequence or structural
alignments suffice to establish extensive one-to-one correspondences between all of their amino acids or a subset of
them.

The consistency of the dynamics of the two sets of amino acids marked for alignment can be assessed by the
standard root mean square inner product (RMSIP) of their essential dynamical spaces. Customarily, the comparison is
restricted to the top 10 essential modes, which are usually sufficient to cover most of the global mean square fluctuation
of a protein observed in MD simulations [48]. Accordingly, the RMSIP is defined as:

RMSIP =

√√√√√ 1

10

10∑
l,m=1

[
n∑

i=1

∑
μ

vl
i,μwm

i,μ

]2

(9)

=
√√√√ 1

10

10∑
l,m=1

∣∣vl · wm
∣∣2 (10)

where vl and wl denote the lth essential mode of the marked amino acids in protein A and B , respectively, and we
have further assumed that matching amino acids carry the same index, i = 1, . . . , n, in the two proteins. Because of
the orthonormality of each of the two basis sets {v}’s and {w}’s, the RMSIP takes on values in the 0–1 range.

The RMSIP measure was introduced for the purpose of assessing the convergence of an MD simulation by compar-
ing the essential dynamical spaces of e.g. the first and second half of the trajectory [4]. Although a simple quantitative
criterion for its statistical significance is lacking, it is generally held that RMSIP values larger than 0.7 imply mean-
ingful dynamical similarities [62]. For completeness we mention that other measures of dynamical similarity and MD
simulation convergence are available, see e.g. Refs. [18,47,134,143,144].

We finally point out that, for the purpose of profiling the contribution of individual amino acids to the overall
mean square inner product one can consider the quantity, which is invariant for changes of the basis of the essential
dynamical spaces [18]:

Qi = 1

10

10∑
l,m=1

[∑
μ

vl
i,μwm

i,μ

][
vl · wm

]
(11)

where i is the index of the amino acid of interest, or its square root qi = √
Qi .

2.6. Best-matching essential dynamical spaces

The RMSIP of Eq. (10) measures the overall consistency of the essential dynamical spaces and therefore is invariant
upon change of the basis vectors for the two linear spaces, {v}’s and {w}.
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Fig. 1. Example of dynamics-based alignment. The two cartoon structures in panels (a) and (b) have dissimilar shapes. Yet, their internal movements,
schematically indicated by the arrows, are consistent and can provide valuable clues for superposing the two structures, as shown in panel (c).

This property can be exploited to replace the {v}’s and {w}’s with two new sets of orthonormal vectors
ṽ1, ṽ2, . . . , ṽ10 and w̃1, w̃2, . . . , w̃10 which are ranked for decreasing mutual consistency (magnitude of the scalar
product) [128].

To do so, one constructs the 10 × 10 asymmetric matrix D whose entries are Dij = wi · vj . Next one solves the
eigenvalue problems [128]:

DT Dai = μiai (12)

DDT bi = μibi (13)

Assuming that the eigenvalues have been ranked by decreasing order μ1 > μ2 > · · · > μ10, and that ai and bi have
unit norm, one has that the new basis vectors are given by

ṽi =
10∑

j=1

ai
j vj (14)

w̃i =
10∑

j=1

bi
j wj (15)

The newly defined orthonormal basis, {ṽ} and {w̃} have the following remarkable properties:

• the ith vector in one set is orthogonal to all vectors in the other set with index different from i, i.e. ṽi · w̃j = 0 if
i 	= j ;

• the scalar products ṽi · w̃i have magnitude that decreases with i;

therefore the new basis vectors are optimally ranked for decreasing mutual consistency and are ideally suited to
represent the most consistent (or inconsistent) subspaces spanned by the {v}’s and {w} [128].

Once more we stress that, as the {ṽ} and {w̃} provide alternative basis for the same spaces spanned by the {v}’s and
{w}’s, the RMSIP of {ṽ} and {w̃} is the same as for the {v}’s and {w}.

2.7. Beyond structural alignment: Dynamics-based protein alignment

2.7.1. Aligning proteins by matching their essential dynamical spaces
The previous approach needs to be suitably generalised in contexts where one wishes to detect dynamics-based

correspondences in different proteins without relying on their prior sequence or structure alignment.
A prototypical situation is illustrated in Fig. 1 where two cartoon structures with different shape are sketched in

panels (a) and (b). Despite the overall shape difference, the structural deformation modes described by the arrows, are
well-consistent and can provide the basis for aligning the two structures, see panel (c).

As first noted by Zen et al. [177], the example in Fig. 1 clarifies that meaningful dynamics-based alignments cannot
be simply obtained by purely rewarding the similarity of directionality and magnitude of the essential dynamical
spaces of any of two sets of amino acids in the proteins of interest. In fact, the alignment shown in panel (c) is
intuitively perceived as viable because the origins of the paired arrows, A–A′ and B–B′, are nearby in space. If
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the origins had been arbitrarily dislocated in space, then the paired arrows would not have implied any consistent
structural modulations of the two shapes (but motions of very large amplitude can significantly change the geometrical
relationships of dynamically-corresponding regions, see Section 3.9).

Prompted by the above considerations, Zen et al. [177] introduced and applied a dynamics-based alignment scheme
which simultaneously rewarded the consistency of the essential dynamical spaces of matching amino acids as well as
their spatial proximity. Specifically, in this alignment technique the score to be maximised over the possible sets of
corresponding amino acids pairs was based on distance-weighted generalisation of the root mean square inner product,√√√√ 1

10

10∑
l,m=1

[
n∑

i=1

∑
μ

vl
i,μwm

i,μ

][
n∑

i=1

∑
μ

vl
i,μwm

i,μf (di)

]
(16)

where i = 1, . . . , n runs over the n aligned amino acids, di is the distance between the ith (matching) amino
acids in proteins A and B after an optimal superposition over the putative matching region, and f (d) = [1 −
tgh((d − dc)/�)]/2 is a sigmoidal distance weighting factor where dc = 4 Å and � = 2 Å.

Notice that, as for the RMSIP, the measure (16) is independent of the choice of the bases spanning the linear space
of the top 10 essential dynamical modes.

The sought dynamics-based alignment is accordingly obtained by maximising the measure of Eq. (16) (after a
suitable n-dependent regularisation, see Ref. [177]) over the space of possible amino acid pairings in the two proteins,
and finally by assessing its statistical significance by comparing it against a null reference case.

Clearly, the combinatorial space of matching amino acids is very large and, because each attempted alignment
involves the re-calculation of the essential dynamical spaces, the computational effort entailed by this comparison is
significant and can take several minutes on present-day computers for two proteins of ∼100–200 amino acids.

By heuristically restricting the search of matching amino acids and by using approximate but faster calculations
of the alignment score, the original algorithm of Zen et al. [177] was sped up sufficiently for interactive use via the
Aladyn web-server [130]. The results of this publicly-available server will be frequently referred to in the remainder
of this article.

2.7.2. Aligning proteins by matching pairwise distance fluctuations
An alternative method to align proteins based on their internal dynamics properties was recently proposed by

Biggin and coworkers [112]. In this method one exclusively considers the pairwise distance fluctuations of amino
acids, with no explicit reference to the spatial coordinates of the latter, nor to the detailed information contained in
the top essential dynamical spaces. This scheme is based on the idea that, if a set of amino acids {α} in protein A

has similar movements to a corresponding set of amino acids {β} in protein B then the matrices of pairwise distance
fluctuations of the two sets, Fα and Fβ , should be similar too.

In the approach of Münz et al. [112] a generic entry of the F matrix is defined as

Fα(i, j) = std.dev(dαi ,αj
) (17)

where the right-hand side is the standard deviation of the distance of amino acids i and j in set α calculated over a
converged molecular dynamics trajectory.

Next, one calculates the relative difference of each corresponding matrix entry,

d(i, j) = |Fα(i, j) − Fβ(i, j)|
(Fα(i, j) + Fβ(i, j))/2

(18)

and an overall dynamical score SAB(α,β) is constructed by weighting the contribution of all d(i, j)’s.
As in the previous approach, the best dynamics-based alignment of the two proteins is found by maximising

SAB(α,β) (again after a suitable length-regularisation procedure) over all possible choices of {α} and {β}. In the
study of Ref. [112], the exploration of the vast combinatorial space of a.a. pairings was carried out within a Monte
Carlo optimisation scheme.

2.7.3. Aligning proteins by matching the mean square fluctuation profiles
The possibility to align proteins by detecting correspondences in the amplitudes of amino acids motions in differ-

ent proteins was first explored by Keskin et al. [75]. In this study, which is covered in Section 3.1, the one-to-one
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correspondences of amino acids in a set of structurally-related proteins was based on a supervised matching of the
amplitude of amino acid fluctuations computed from an isotropic elastic network model [8].

An automatic implementation of this alignment strategy was recently introduced by Tobi [163]. In this study, the
one-dimensional character of the quantity to be matched (mean square fluctuation) was exploited, as in sequence
alignments, within the dynamical-programming alignment of Needleman and Wunsch [115].

3. Comparative studies of protein internal dynamics

Early systematic dynamics-based comparisons were all targeted to groups of proteins known to be significantly
related from the sequence, structural or functional point of view. In such contexts, in fact, the assessment and interpre-
tation of the comparisons is more straightforward. Accordingly, we shall first discuss these comparative investigations
of proteins whose relatedness is known a priori. We shall next report on studies which considered proteins with lim-
ited structural relatedness as well as investigations targeted at understanding more general (and possibly evolutionary)
dynamics-based aspects of the structure/function relationship. When appropriate, the results of these earlier studies
will be revisited using the dynamics-based alignment of Ref. [177] as implemented in the publicly available Aladyn
web-server [75].

3.1. Common fluctuation patterns in proteins with a Rossmann-like fold

We first discuss the case of proteins adopting a Rossmann-like fold which were addresses in the studies of Keskin
et al. [75] and Pang et al. [120].

In the study of Ref. [75], which is arguably the first dynamics-based comparative investigation, Keskin et al.
considered six proteins each consisting of two linked globular domains with a Rossmann-like fold. The proteins
covered two homologous groups: the first one (CATH [122] code 3.40.190.10) included cofactor binding fragment
of CysB, the lysine/arginine/ornithine-binding protein (LAO), the enzyme porphobilinogen deaminase (PBGD), the
N-terminal lobe of ovotransferrin (OVOT) while the second one (CATH code 3.40.50.2300) comprised the ribose-
binding protein (RBP) and the leucine/isoleucine/valine-binding protein (LIVBP).

The internal dynamics of these proteins was characterised by using a simplified (isotropic) Gaussian network
model [8] to compute their mean-square fluctuation profiles and the lowest energy modes. The authors observed that
the latter mostly entailed a hinge-bending motion of the two domains around the linker and the predicted motion
amplitude varied significantly between the unliganded and liganded state of the molecules. In connection to this latter
result it is worth noting that for several other proteins it has been shown that the internal dynamics sensitively depends
on substrates and cofactors. A prototypical example is offered by dihydrofolate reductase where dynamical properties,
arguably linked to catalysis, has been shown numerically to strongly depend on the type of bound ligand [136].

The similarities of the modes amplitude profiles across the six proteins, further prompted Keskin et al. to attempt
a manually-curated alignment of the proteins by matching the modes shape in a gapless portion of one of the two
domains. The amino acid correspondences were next extended to the remainder of the proteins by inspecting both
their FSSP structural alignments [68] and, again, the modes shape. These supervised alignments returned very good
superpositions of the modes amplitude profiles across the considered proteins and, because of the limited use of
structural correspondences, the RMSD after an optimal superposition of the corresponding amino acids was about
7 Å.

From the consistency of the modes’ profiles the authors concluded that members of the same fold can share com-
mon dynamical features on a global, collective scale and further envisaged that fully-automated dynamics-based
alignments of proteins might have been feasible.

The implications of structural relatedness for the similarity of protein internal dynamics were next explored by
Pang et al. [120] by using atomistic molecular dynamics simulations on a set of four periplasmic binding proteins in
various forms: apo, holo and crystallised in different conditions.

The monomeric units of these entries, which included the LAO protein considered by Keskin et al. [75], comprised
about 230 amino acids and consisted, again, of two Rossmann-like domains connected by a linker. Based on DALI
[67] alignments Pang et al. identified a core of 100 amino acids (i.e. spanning about 40–45% of the proteins) common
to the four proteins.
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Table 1
Representatives of the seven common protease folds, A–G. The list includes proteases with different catalytic chemistry
(aspartic-, serine-, cysteine- and metallo-proteases). For convenience of comparative purposes, because the active site
is comprised within the monomeric units of 3C-like proteinase, assemblin and dipeptidyl peptidase I, we did not con-
sider the multimeric biological form of these entries. Conversely, because the catalytic aspartic dyad of HIV-1 protease
straddles the dimeric interface, we retained its full dimer. The corresponding structures are represented in Fig. 2.

Tag Protein PDBid CATH code

A endothiapepsin (ASP) 1er8E 2.40.70.10
B HIV-1 protease (ASP) 1nh0AB 2.40.70.10
C 3C-like proteinase (SER) 1uk4A 2.40.10.10

1.10.1840.10
D1 adenain (CYS) 1avp 3.40.395.10
D2 sedolisin (SER) 1ga6 3.40.50.200
D3 pyroglutamyl peptidase I (CYS) 1ioi 3.40.630.20
E assemblin (SER) 1jq7A 3.20.16.10
F1 dipeptidyl peptidase I (CYS) 1k3bA 2.40.128.80
F2 cruzipain 1me4 3.90.70.10
G1 atrolysin E (Zn) 1kuf 3.40.390.10
G2 carboxy peptidase A1 (Zn) 8cpa 3.40.630.10

The comparison of the internal dynamics was carried out on the common core amino acids and regarded various
quantities calculated from 10- or 20-ns long molecular dynamics simulations. In particular, the comparison included:
the amino acids’ mean square fluctuations, the overlap of the covariance matrices and the overlap (RMSIP) of the two
essential dynamical spaces.

By comparing the properties of the same protein but in liganded and unliganded forms, Pang et al. observed clear
differences in the molecules’ internal dynamics, consistently with the findings of Keskin et al. reported above.

Regarding the comparison of different proteins, the authors reported a significant overlap of all dynamical prop-
erties computed over the common core. In particular, throughout the set of periplasmatic binding proteins, the first
and second essential dynamical modes systematically corresponded to, respectively, the hinge-bending and twisting
motions of the linked domains.

However, by examining how the overlap of the covariance matrix and essential dynamical spaces increased with
simulation time, the authors observed that each protein tended to occupy specific regions of the essential dynamical
space. It was concluded that these differences reflected protein-specific features, arguably encoded in their sequence.
While, it cannot be ruled out a priori that the observed differences could be ascribable to the several non-aligned
amino acids, the observation of Pang et al. is very interesting and relevant in the present context, because it points
to specific dynamics-based features which can be beyond reach of sequence-independent approaches, such as elastic
network models.

3.2. Dynamics-based alignment of proteases

Proteases, enzymes that cleave peptide chains, account for about 2% of the genome of various organisms [135,140,
153]. In view of this representative weight and biological importance, they have been systematically investigated and
compared.

The comprehensive survey carried out by Tyndall et al. [165], identified 7 common structural folds for this family
of enzymes. Various representatives for the seven common folds were identified by Carnevale et al. [19] and are listed
in Table 1 and shown in Fig. 2.

As reported in Table 1, the various representatives cover 4 different architectures and 9 different topologies of the
CATH classification scheme [122]. Notice that the two aspartic proteases, the endothiapepsin and HIV-1 PR share
the full CATH code, implying that they have detectable sequence homology despite their marginal sequence identity,
different length and different oligomeric state (monomeric for endothiapepsin and dimeric for HIV-1 PR) [13,22,159].

Besides this ASP-protease pair, other pairs of entries listed in Table 1 have significant overall structural similarities.
In particular the six possible distinct pairings between pyroglutamyl peptidase I, atrolysin E, sedolisin and carboxy
peptidase A1 are all significant according to the DALI statistical criteria [67]. Interestingly, the simultaneous multiple
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Fig. 2. Representative structures of the common protease folds listed in Table 1. This illustration and subsequent ones were prepared with the VMD
graphical package [70].

Fig. 3. Structural alignments of pyroglutamyl peptidase I with (a) sedolisin, (b) carboxy peptidase A1 and (c) atrolysin E. In all panels the pyrog-
lutamyl peptidase I is shown in red, while the partner proteins are shown in blue. Aligned regions are shown with thick ribbons and known active
sites [129] are highlighted with Van-der-Waals surfaces. The trace of non-aligned regions is shown as a thin grey curve.

alignment of these four entries is poor and involves several short fragments for a total of about 30 amino acids
(consistently for both Mistral and Multiprot [103,148]).

The top structural alignments within this group involved the entry pyroglutamyl peptidase I and are shown in Fig. 3.
As it was reported in Ref. [19] (see Fig. 3 therein) the alignments, involve several disconnected matching fragments
comprising the active site and the surrounding region within 7–10 Å of it.

The good structural superposition of the active sites in panels (a) and (b) of Fig. 3 provides evidence for the
existence of functionally-related traits that are shared by proteases that are non-homologous and rely on different
catalytic chemistry (serine-, cysteine- and metallo-proteases).

The fact that functional activity of various proteases is known to be impacted by their large-scale internal dynamics
[13,124–126], which can involve mechanical couplings between the active site and distal regions at the protein surface
[102,124–126], poses the question of whether dynamics-based alignments can be used to identify further relationships
between proteases that are elusive to the pure structural comparison. The possibility to do so is illustrated in Fig. 4,
which illustrates the dynamics based alignment of HIV-1 PR and endothiapepsin.
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Fig. 4. (a) Dynamics-based alignment of HIV-1 protease (red) and endothiapepsin (blue) obtained with the Aladyn web-server [130]. A thick
ribbon is used to highlight aligned regions and known active sites are highlighted with Van-der-Waals surfaces. The trace of non-aligned regions is
shown as a thin grey curve while the arrows represent the three best matching essential modes. The ribbons and the modes are shown separately in
panels (b) and (c), respectively.

Following the spirit of Ref. [19], we have used the Aladyn algorithm to align all pairs of entries in Table 1.
In addition to the previously mentioned significant structural pairings, the Aladyn algorithm identifies 8 additional
significant alignments (p-value < 0.02, corresponding to the incidence of less than one false positive in the set of
all pairwise alignments of the entries in Table 1). These pairs are shown in Fig. 5. Notice that calpain, adenain,
atrolysin E, and HIV-1 PR (corresponding respectively to tags F2, D1, G1 and B in Table 1) constitute a notable
dynamically-alignable “clique” because all pairings of these proteins (with the sole exception of cruzipain–HIV-1 PR
which involves only 30 amino acids) are significant.

The structural and dynamical consistency of the 8 aligned pairs is shown in Fig. 5. It is striking to see that the
active sites of the compared proteins are very well superposed or in contact, with the exception of two alignments,
assemblin–HIV-1 PR (E–B) and assemblin–atrolysin E (E–G1) where the active sites are at a distance of 10 Å. The
overall RMSD of the matching amino acids is ∼3.0 Å.

It is also noticed that the corresponding modes, tend to outline a shearing deformation of region surrounding the
active site. This result is in accord with the general functional features common to proteases, which consists of the
shearing of the bound peptide into a beta extended conformation prior to cleavage [165]. More generally, the finding
is consistent with the observed property that active sites in enzymes tend to be located at the interface of quasi-rigid
domains, as this can ensure a fairly rigid geometry of the catalytic region located at the interface combined with
an appreciable modulation of the surrounding region which ought to aid the substrate recognition and processing
[131,146].

For the specific case of proteases, the dependence of the enzymatic activity and catalytic rate on the global confor-
mational fluctuations of the proteins has been advocated for HIV-1 PR [126] (but this does not occur for furin, a serine
protease [20]). The proposed mechanism for HIV-1 PR has been corroborated by recently experimental findings [30].
Further examples of the coupling between the modulation of the geometry of the region near the active site and the
global protein motions are provided by triose phosphate isomerase [80] and dihydrofolate reductase [1,138].

We emphasise that all the pairings identified with the dynamics based alignment shown in Fig. 5 are not deemed sig-
nificant in DALI alignments. The findings therefore suggest that, for certain proteins and enzymes, some functionally-
oriented features can be more confidently identified using dynamics-based alignments than with sequence- or struc-
ture-based alignment approaches.

3.3. Dynamics-based alignment of PDZ domains

We next discuss the dynamical similarities of members of the PDZ domain family. PDZ domains are structural
moduli commonly associated to ion channels and receptors or otherwise involved in signal transduction pathways
[41,111,112,152].

They are typically 80–100 amino acids long and adopt an overall globular fold comprising two α helices and 6β

strands, see Fig. 6b. The interaction with a partner protein usually occurs through the accommodation of its C-terminal
segment in the β2–α2 cleft. In fact, the observed mobility of helix α2 relative to the PDZ-domain core has been argued
to be important for ligand binding and recognition [31,77,112]. Although PDZ-domains sustain modest structural
changes after ligand binding, see panels (a) and (b) in Fig. 6, experimental and numerical evidence suggest that there
exist allosteric pathways running internally to the molecule that signal the binding event to regions that are opposite on
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Fig. 5. Significant dynamics-based alignments of various pairs of proteases. The pairs are tagged as in Table 1. For each pair we report separately
the structural superposition of the aligned regions (ribbons) and of the top three best-matching modes (arrows). Aligned elements are shown in
blue for the first entry of the pair and in red for the second. The active sites are shown in cyan and pink for the first and second entry of the pair,
respectively.

the protein surface respect to the binding cleft [31,77,82,89]. While key aspects of the signal propagation mechanism
are still controversial [25] various evolutionary aspects of the allosteric mechanism and the binding mode have been
actively investigated using a variety of techniques including bioinformatics [89], NMR [82], elastic network linear
response theory [49] and molecular dynamics simulations [112].

In particular, Biggin and coworkers [112] have recently introduced and systematically applied the dynamics-based
alignment outlined in Section 2.7.2, to compare the mainchain dynamics of 10 PDZ domains from both unicellular



14 C. Micheletti / Physics of Life Reviews 10 (2013) 1–26
Fig. 6. (a) Apo and (b) holo forms of a PDZ domain. The PDBid of the shown entries is 1bfe for the apo form and 1be9 for the holo one. The ligand
bound to the α2–β2 cleft of the holo form is highlighted in orange. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
List of PDZ domains considered in Ref. [112]. The blank line separates PDZ domain from multicellular organisms (above line) from
unicellular ones (below line).

Compound CATH domain CATH code

Postsynaptic density protein 95 (PSD-95) 1be9A00 2.30.42.10
Nitric-oxide synthase (nNOS) 1qauA00 2.30.42.10
Alpha-1 syntrophin 1qavA00 1.14.13.39
Inactivation-no-after-potential D protein (Inad) 1ihjA00 2.30.42.10
Segment polarity protein dishevelled homolog DVL-2 (DVL2) 2f0aA00
Glutamate receptor interacting protein 2 (GRIP2) 1x5rA00

Tricorn protease 1k32A04
Type II secretion system protein C 2i6vA00 3.4.21
Hypothetical serine protease rv0983 1y8tA03
Photosystem II D1 protease 1fc6A02 2.30.42.10

and multicellular organisms, see Table 2. The dynamics-based comparison, was based on the analysis of pairwise
distance fluctuations of amino acids calculated from 20-ns long atomistic molecular dynamics simulations.

Within this set of sequence- and structurally-related PDZ domains Münz et al. observed the largest dynamical con-
sistency among the domains from multicellular organisms. In fact, significant dynamics-based similarities were found
almost exclusively among entries from multicellular organisms (particularly pairs nNOS–PSD95, nNOS–Alpha-1
syntrophin, nNOS–DVL2, Inad–Alpha-1 syntrophin, Inad–DVL2, DVL2–Alpha-1 syntrophin).

One such pair, PSD95 and nNOS, was analysed in-depth to highlight the differences of sequence, structure and
dynamics-based alignments. Through this comparative investigation, the authors noticed that dynamical correspon-
dences were particularly poor in the α2 region, which is otherwise structurally well-alignable. Because the mobility of
this helix arguably impacts the binding of ligands it was concluded that the dynamical differences could reflect subtle
differences in the functionality of PSD95 and nNOS [112].

The findings of Münz et al. are illustrated and revisited here through the dynamics-based alignment method of Zen
et al. as implemented in the Aladyn web-server. The Aladyn alignment of PSD95 and nNOS is shown in Fig. 7 and
illustrates the good consistency of the essential dynamical spaces of the aligned regions. Interestingly, the contribution
of the various corresponding amino acids to the good RMSIP value, which is equal to 0.74, is rather uneven.

This is illustrated in Fig. 7(b) which portrays the residue-wise contribution to the mean square inner product, Qi

(see Eq. (11)) along with the mean-square residue fluctuations. It is seen that the Q profile is peaked in correspondence
of the loops L1, L2, L3 and L4 which are also associated to peaks of the crystallographic B-factor profiles. Although
the comparison of computed mean-square fluctuations with B-factors is not perfectly transparent (the latter are affected
by crystal packing and disorder [45]), the accord of the two sets of peaks is consistent with the intuition that, given
the overall accord of the essential modes, the highest values of Q should be observed in correspondence with regions
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Fig. 7. Dynamics-based alignment [130] of the two PDZ domains discussed in Ref. [112]. The alignment was obtained with the Aladyn web-server
[130] and consists of an uninterrupted stretch 87 amino acids (ARG309–GLU395 for 1bfe and ASN14–GLU101 for 1qau) at an RMSD of 2.2 Å and
with an RMSIP of 0.74. The structural superposition is shown in panel (a) and the top three matching modes are shown in panel (b). Corresponding
elements for entry 1bfe are shown in red while those for entry 1qau are shown in blue. The crystallographic B-factors and the local essential
dynamics space overlap, q = √

Q (see Eq. (11)), of 1bfe are shown respectively with a dashed and a solid line in panel (c). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

of high mobility (where the norm of the essential modes concentrates). By the same token, one would have expected
to observe a peak of the Q profile in correspondence of the mobile helix α2 and the nearby portions of the flanking
strands β5 and β6. By contrast, however, the relative contribution of these regions to the RMSIP is small. This is
therefore indicative of a poor consistency of the generalised direction of motion of this region in the two proteins of
interest, thus confirming the findings of Münz et al. from a different dynamics-based perspective.

3.4. Conservation of general dynamical patterns in protein families and superfamilies

Besides the previous investigations that aimed at elucidating specific functionally-related aspects in different
proteins by using dynamics-based alignment strategies, there have been a number of studies where more general
dynamical properties were compared across various protein families and superfamilies.

In recent years Echave and coworkers have carried out several such studies with the purpose of assessing the extent
to which features such as mean-square fluctuation profiles and overall shape (amplitude modulation) of the essential
modes have been evolutionarily conserved [92–94].

The first of such analyses was carried out for a set of 18 members of the globin family [93]. The considered globins
typically consisted of 130–150 amino acid and shared a structural core of 68 amino acids [103].

The comparison of Maguid et al. [93] was focused on the set of about 100 corresponding amino acids that were
identified by the multiple (CLUSTAL [161]) sequence alignment of the 18 globins.

The dynamics of the globins was next characterised by the mean-square fluctuation profiles and molecules’ lowest
energy modes which were computed using the isotropic Gaussian network model [8]. In this model, the presence of
the heme group was not taken into account.

The comparison of the dynamics across the different globins was carried out by measuring the linear correlation
coefficient between the fluctuation amplitudes of corresponding amino acids or between their displacements in the top
modes. For comparative purposes, the latter were reranked so as to have maximally compatible sets of first modes,
second modes etc. across the globins. The main differences of this comparative strategy from the one described in
Section 2.4 is that the dynamics of the corresponding amino acids is obtained by neglecting the effect of non-aligned
amino acids (equivalent to omitting the second term in Eq. (8)) and for the use of reranked top modes in place of
identifying the most consistent directions in the linear space spanned by the top modes.

After carrying out these comparative steps, Maguid et al. [93] concluded that both the mean-square fluctuations
and the shape (amplitude modulation) of the top reranked modes were highly consistent across the various members
of the globin family.

Building on these findings, Maguid et al. [92,94] extended the analysis to a comprehensive set of ∼1000 protein
entries from several hundred families superfamilies of the HOMSTRAD database [108,133,154]. The studies followed
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the same comparative pathway outlined above for the globins, with the significant modifications that corresponding
amino acids were identified in pairwise MAMMOTH [119] structural alignments and the anisotropic beta-Gaussian
elastic network model was used in place of the isotropic one. Furthermore, the degree of collectivity of the modes was
also assessed and compared.

The studies of Refs. [92,94] reported that the dynamical similarity (mean-square-fluctuation profiles, mode shape
and mode collectivity) within members of the same family and superfamily was significantly larger compared to pairs
of unrelated protein entries. In addition, the similarity within the same family was stronger than within the same
superfamily.

From this series of studies, Echave and coworkers concluded that general dynamical properties of proteins tend to
be preserved in the course of evolution and are quantitatively detectable.

3.5. Conservation of specific functionally-oriented dynamics in enzymes

In the recent study of Ref. [137] Ramanathan et al. addressed, by means of atomistic molecular dynamics sim-
ulations, the extent to which enzymes with the same function but different degree of homology rely on the same
functionally-oriented dynamics.

The study considered a few members for each of three different types of enzymes: the CypA peptidyl–prolyl
isomerase, the DHFR oxidoreductase and ribonuclease A (RNaseA).

For each member, extensive molecular dynamics simulations were carried out. The authors next compared the
dynamics-based features that directly impacted the known rate-limiting step of the enzyme catalytic activity. This
important technical step allowed Ramanathan et al. to address in a direct and precise way the functionally-oriented
dynamical aspects of the proteins without relying on their dynamics-based alignment or considering general aspects
of the internal dynamics that are inconsequential for biological functionality [137].

By these means Ramanathan et al. ascertained that the reaction-coupled motions of the members of each of the
three types of enzymes were highly similar. Because the members were picked from different species it was further
concluded that the detailed functionally-oriented dynamical aspects have been evolutionarily conserved.

The analysis established two further notable features. First, the dynamical similarities found for the homologous
CypA entries were found to extend to the non-homologous PIN1 peptidyl–prolyl isomerase. In consideration of the
structural differences of the modelled structure of Pin1 and CypA it was concluded that the reaction-coupled motions
of the enzymes were conserved despite the structural differences. Secondly, it was observed that the dynamical aspects
influencing the functional activity involved regions that are not necessarily near the active site, thus pointing out at an
overall interplay of local and global aspects in the functional “mechanics” of the enzymes. The fact that these features
might hold for several other enzymes is reinforced by the consistency with the findings reported earlier for members
of the proteases family as well as by instances such as R67 dihydrofolate reductase where enzyme flexibility has been
argued to impact the catalysed reaction [74].

3.6. Comparison of general dynamical patterns in members of the SCOP database

Besides the above-mentioned studies, a comparative investigation of mean-square fluctuation profiles and mode
shapes was recently undertaken by Tobi [163] for an extensive set of entries from the SCOP/Astral database [6,23].
A distinctive point of the analysis of Ref. [163] is the fact that the set of amino acids over which the dynamical
properties are automatically compared is not identified by sequence or structural alignments, but by matching the
fluctuation (or mode) amplitude profile itself, as first envisaged by Keskin et al. [75].

A key ingredient of this comparative approach is the use of the isotropic Gaussian network model [8]. Because this
phenomenological model does not possess the full rotational–translational invariance of the three-dimensional elastic
networks, its essential dynamical spaces have a one-dimensional character. By restricting considerations to the one-
dimensional profile of a single mode (or of the mean-square fluctuation) Tobi used a dynamics-based programming
strategy to identify corresponding amino acids for various pairs of proteins.

Significant matches were reported for pairs of proteins with different overall structural organisation. Consistently
with the isotropic character of the elastic network model, the lowest energy mode of these matching proteins typically
exhibited a single node located approximately in the middle of the matching subchain, thus entailing a hinge-bending
motion. This motion was prototypically illustrated in Ref. [163] for two pairs of entries: OPRTase (PDBid, 1s7o



C. Micheletti / Physics of Life Reviews 10 (2013) 1–26 17
Fig. 8. Dynamics-based alignment of two OPRTase (PDBid: 1s7o chain A) and Mediator complex subunit 21 (PDBid: 1ykh chain A) discussed in
Ref. [163]. The structural superposition of the aligned regions (ribbons) and three best-matching modes (arrows) are shown in panels (a) and (b),
respectively. Aligned elements of OPRTase are shown in blue, while those of Mediator complex subunit 21 are shown in red. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

chain A) with Mediator complex subunit 21 (PDBid 1ykh chain A fragment 111–205) and Baseplate wedge protein 9
(PDBid, 1s2e chain A) with transcarboxylase (PDBid 1rqh chain A fragment 307–474).

Notably, the former of these two pairs has also a significant dynamics-based alignment according to the scheme
of Zen et al. which employs a three-dimensional elastic network model as well as the integration of the dynamics of
non-corresponding amino acids). The corresponding Aladyn alignment is shown in Fig. 8.

3.7. Comparison of the structural variability in a protein superfamily with the internal dynamics of its members

An interesting problem regards the extent to which evolutionary conformational drifts observed in proteins super-
families occurs along the essential dynamical spaces of the family members.

This question was first posed by Leo-Macias et al. [83] who considered 35 representative protein families. For
each family, the members were first structurally aligned to identify the common core and then a principal component
analysis was carried our to obtain the main deformation modes. The latter were finally compared with the essential
dynamical spaces obtained from elastic network models. The comparison of the two sets of spaces, which nowadays
can be largely automated with the aid of bioinformatic tools such as ProDy [9], indicated a good mutual consistency.

The investigation of Leo-Macias et al. was recently extended by Velazquez-Muriel et al. [167] who considered
a larger set of 55 families and used atomistic MD simulations. This study reported that the conformational space
explored in MD simulations at constant-temperature has a smaller breadth than that spanned by known members of
the same superfamily. However, the complexity of the explored space is significantly larger for MD simulations than
for the internal variability of protein superfamilies. In this study the complexity was defined and measured as the
minimal number of essential modes required to account for the same fraction of the global mean-square fluctuation of
the superfamily or MD trajectory.

Based on these findings, Velazquez-Muriel et al. [167] concluded that the structural evolution of superfamilies
has occurred in diverse and much richer ways than those kinetically accessible in thermal equilibrium to any of the
superfamily members. Yet, such enhanced conformational variability was constrained in fewer generalised directions,
compared to those that are a priori kinetically accessible.

These conclusions, in turn, prompted the speculation that the restrictions to the viable superfamily “conformational
complexity” reflect the evolutionary pressure to preserve certain patterns of structural fluctuations/motion that can-
not be arbitrarily modified without compromising dynamics-based aspects relevant to function. The effect was most
evident for enzymes, where the largest restrictions of the conformational variability was observed [167].

The possibility that physics-based constraints may also promote the consistency of the evolutionary deformation
modes and essential dynamical spaces was explored by Echave and coworkers in Refs. [35,36]

3.8. Dynamics-based alignment of proteins with different structure and function

We now report on the studies of Zen et al. [177] who carried out comparisons of the internal dynamics of a
comprehensive set of 76 enzymes covering the six main functional groups (oxydoreductases, transferases, hydrolases,
lyases, ligases).
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Fig. 9. Examples of significant dynamics-based alignments of proteins with different degree of structural and functional similarities (captured
by the CATH code and primary EC number, respectively). The examples are taken from Ref. [177] and the alignments were produced with the
Aladyn web-server. The aligned proteins in panel (a) have the same fold (they share the full CATH code) but have different function. The pair
in panel (b) have the same function but different CATH architecture. The pair in panel (c) differ by CATH architecture and function. The pair
in panel (a) involves a haloalkane dehalogenase (PDBid 2had, CATH: 3.40.50.1820, EC: 4) and an (s)-acetone-cyanohydrin lyase (PDBid: 1yb7,
CATH: 3.40.50.1820, EC: 3). The pair in panel (b) involves a Cellobiohydrolase i (PDBid: 1dy4, CATH: 2.70.100.10, EC: 3) and a glucanase
(PDBid: 2ayh, CATH: 2.60.120.200, EC: 3). The pair in panel (c) involves an exonuclease (PDBid: 1ako, CATH: 3.60.10.10, EC: 3) and an Enoyl-
reductase (PDBid: 1d7o, CATH: 3.40.50.720, EC: 1). For each pair we report separately the structural superposition of the aligned regions (ribbons)
and of the top three best-matching modes (arrows). Aligned elements are shown in blue for the first entry of the pair and in red for the second. The
active sites are shown in cyan and pink for the first and second entry of the pair, respectively.

The analysis of Zen et al. was aimed at ascertaining whether similar functionally-oriented dynamical properties
(arising from either evolutionary conservation or convergence) could be found in enzymes with major sequence and
structure differences.

The study entailed the dynamics-based alignment (in the spirit of Section 2.7.1) of all the possible pairings of such
enzymes. About 30 of such pairings were singled out as being outstanding for statistical significance. Two thirds of
such pairings involved enzymes with detectable sequence homology or structural similarity as resulting by global or
partial structural superposition using the DALI alignment program. One such example is offered by the pair 1yb7–
2had which share the full CATH code, despite the different function. The dynamics-based alignment of this pair is
shown in Fig. 9(a) where one can observe the remarkable structural superposition of the molecules’ active sites.

Interestingly, the remaining third of the significant pairings involved entries whose structural relatedness was not
significant by standard alignment criteria and occasionally involved enzymes with different function, i.e. different
primary Enzyme Commission (EC) number.
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Fig. 10. Crystallographic structures of three Hsp90 conformers used in the comparative dynamics study of Ref. [109]. The structures correspond to:
(A) canine ATP-bound Grp94 structure, PDBid: 2o1u; (B) yeast ATP-bound Hsp90 structure, PDBid: 2cg9; (C) HtpG structure, PDBid 2iop.pdb.
Different colours are used to highlight the various structural subdomains: blue, N-terminal domains; red, M-large domains; orange, M-small
domains; yellow, C-terminal domains. Reproduced from Fig. 1 of Ref. [109]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Two such pairs are respectively, 1dy4–2ayh and 1ako–1d7o, which are respectively shown in panels (b) and (c)
of Fig. 9. It is seen that while the overall structural correspondence is limited (and in fact aligned regions can have
different secondary structure content), the alignment reflects a very good consistency of the matching modes as well
as the superposition of the known active regions.

As for the previously discussed case of proteases, the match of the latter and the fact that the matching modes
entail the modulation of the region surrounding the active site, support the notion that common functionally-oriented
dynamics-based properties can be detected in proteins that possibly differ by structure and even detailed catalytic
chemistry [58,137].

3.9. Comparing large-scale movements of multidomain proteins

As anticipated at the end of Section 2.1, a particularly challenging case for characterising protein internal dynamics,
as well as comparing it, is represented by proteins comprising mobile domains.

For such molecules, in fact, the relative displacements of the mobile domains can be so large that the motion
is only poorly described by linearly superimposing a few essential modes onto a reference structure, see Fig. 3 in
Ref. [151]. A familiar example is offered by the opening of a door: the larger the opening angle, the poorer the
directional consistency of the initial displacement of the door’s edge and the difference vector of the initial and final
edge positions. As a consequence, the essential dynamical spaces calculated for a short trajectory, or by applying
elastic network models on a specific protein conformer, can only limitedly capture and describe large-amplitude
motions in such complexes. Furthermore, the very same calculation of essential dynamical spaces from extensive
MD simulations can be problematic because they rely on the use of rigid-structural alignments which cannot well
superimpose the visited conformers over all their amino acids.

At least for some proteins with mobile subdomains, using internal angular coordinates instead of Cartesian dis-
placements can provide a viable alternative for describing the large-amplitude protein motion [90,98,118].

The fact that suitably-defined angular coordinates can be used for comparing the dynamics of proteins articulated
in several domains was recently illustrated by Morra et al. in Ref. [109]. This study considered three homodimeric
multidomain Hsp90 chaperones, namely mammalian Grp94, yeast Hsp90 and E. coli HtpG. The three chaperones,
which are represented in Fig. 10, have a mutual sequence identity of ∼45% and most of their amino acids can be put
into one-to-one correspondence by using flexible structural alignment [174].

The internal dynamics of the chaperones was characterised by extensive molecular dynamics simulations started
from different initial conformers which differed by the presence and type of bound ligand. Next, to extract the large-
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scale dynamical features that are shared by the chaperones, considerations were restricted to the extensive set of
corresponding amino acids.

The motion of such set was found to be well approximated by the relative rigid-like movements of three quasi-rigid
domains (similar, but not equal, to the structural ones). As a matter of fact, for all three chaperones it was possible
to identify two consensus hinges and axes of motion controlling the rotation of the side-domains relative to the core
of each protomer. Notably, one of the hinges (the one at the boundary of the N-terminal and Middle domain) occurs
in correspondence of a site that had been previously shown to be important to chaperone functionality. In fact, it
was validated as a as a potential target for Hsp90 inhibition [164,166]. Based on the detailed analysis of the same
simulations carried out in Ref. [109] it was further concluded that an analogous role could be played by the site
accommodating the second hinge.

The study of Ref. [109] therefore suggests that comparative dynamical analysis based on quasi-rigid protein domain
movements could represent a promising avenue for identifying functional relationships in multidomain proteins and
possibly protein complexes too.

3.10. A dynamics-based metric for protein space

We conclude the overview by reporting on the recent work of Hensen et al. [58] who considered a set of ∼100
proteins covering the main known folds and compared their structural features and especially a comprehensive se-
ries of dynamical observables calculated from 100-ns long atomistic MD simulations. In particular, to each protein
entry, Hensen et al. associated a dynamical “fingerprint” consisting of a multidimensional array whose components
were dynamics-based scalars. These scalar quantities included the spread of the essential dynamics eigenvalues, the
roughness of the free energy landscape, the root-mean-square deviation from the crystallographic structure, the root-
mean-square fluctuations from the average structure etc.

At variance with the studies mentioned earlier, which aimed at detecting detailed dynamical correspondences
among proteins, the investigation of Ref. [58] was mostly targeted to establishing the overall features of the space
spanned by the dynamical fingerprints. In particular, Hensen et al. meant to introduce a dynamics-based metric to ex-
plore the occupation of the fingerprint space (termed the “dynasome space”) and understand e.g. whether structurally
or functionally similar proteins can be clustered.

From this survey, the authors concluded that in the considered dynamical space, proteins are not partitioned in
distinct clusters but are distributed rather continuously. This interesting aspect therefore parallels the findings of
recent studies which support the view that structural properties cover a continuum rather than a discrete succession of
conformers [121,149,172,180].

The analysis has further revealed the strong connection between dynamical and structural similarities, consistently
with the studies, mentioned earlier in this review, where the structural relatedness has been frequently associated to
strong dynamical implications.

It is interesting to observe that, as in the study of Zen et al. [177] described in the previous section, the analysis of
Hensen et al. [58] has highlighted the possible existence of appreciable dynamical similarities in proteins with limited
structural relatedness. The example offered by the authors pertained to the pairing of two hydrolases, serralysin and
rhizopuspepsin (PDB codes 1sat and 2apr). Their structural alignment is non-significant according to DALI statistical
criteria while in the dynamic metric space considered by the authors they have a strong dynamical proximity. Con-
sistently with this finding the Aladyn alignment of this pair, which involves 79 amino acids, is statistically significant
too as the observed RMSIP = 0.66 and the associated p-value is 0.025.

Finally, by examining the dynamic fingerprint of functionally-related proteins Hensen et al. [58] concluded that it
ought to be possible to reliably establish and assign proteins function based on their neighbours in the metric dynamic
space. Indeed, the possibility to carry out functional assignments on the basis of dynamics-based data represents a
very interesting avenue with several practical ramifications.

As a related issue we report that pairwise dynamics-based alignments have been previously carried out with the
purpose of predicting the active site of proteins for which standard homology-based approaches are not applicable. In
particular, this approach was undertaken to predict the nucleic-acids binding sites of proteins adopting non-canonical
OB-folds, as discussed in Ref. [178].
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4. Conclusions

Over the past decades, several bioinformatics tools and computational methods have been introduced and system-
atically applied to clarify aspects of the relationship between structure and dynamics for protein and enzymes.

Many such studies contributed to clarifying how the interplay of structure and internal dynamics of various proteins
impacts their biological functionality. The latter, in fact, is often – though not always – associated with the innate
capability of these biomolecules to sustain concerted, large-scale conformational changes so to bind ligands, change
oligomeric state etc.

In recent years, besides the well-established approach of dissecting such properties for specific, individual proteins
and enzymes, there has been a growing interest for comparative studies of proteins’ internal dynamics.

In such studies, covered by this review, the key dynamics-based properties of proteins are singled out by identifying
those features (such as essential dynamical spaces, mean square fluctuation profiles, relaxation times etc.) that are
shared by proteins with different degrees of sequence, structure and functional similarities.

Such comparative investigations have been carried out with two main purposes: characterising functionally-
oriented mechanisms for specific groups of proteins and understanding the more general organisation of the “protein
universe” by complementing the sequence and structural perspectives with a dynamics-based one.

For the first objective, detailed comparative tools have been developed, including the so-called dynamics-based
alignments which use dynamics-based properties to establish one-to-one correspondences of amino acids in different
proteins. These strategies have been used to identify common hinge-bending motions in multidomain proteins, to
complement sequence and structural alignment in singling out functionally-relevant regions in proteins with different
degrees of homologies, and to highlight common large-scale movements in proteins that differ significantly by fold
and/or function.

The latter aspect, is tightly connected to the second objective, namely the development and use of dynamics-based
criteria to trace elusive evolutionary relationships and group/classify proteins by their internal dynamics [17,50,51].
This perspective has been pursued so far to highlight the degree of conservation of the amplitude of amino acid
fluctuations in protein families and superfamilies, to clarify the extent to which the structural variations accumulated
within protein superfamilies have occurred along the “innate” directions of structural fluctuations of its members, and
even to introduce a metric to quantify how evenly are proteins distributed in a generalised dynamics-space. The latter
perspective can have important implications for functional assignment.

In conclusion, the valuable findings provided by the recent introduction of methods for comparing detailed or gen-
eral dynamical properties of proteins suggest that they could be profitably used in conjunction with classic comparative
methods to characterise proteins at the various steps of the sequence → structure → function ladder.

Arguably, the progress towards this goal would be greatly aided by the development of unsupervised methods to
single out those dynamical features that are more likely attributed to the biological functionality of a given protein and
by the more systematic investigation of evolutionary relationships from a detailed dynamics-based perspective.

Acknowledgements

I am grateful to P. Agarwal, G. Bussi, V. Carnevale, J. Echave, A. Finkelstein, H. Gruebmueller, R. Jernigan,
A. Lesk, D. Tobi and A. Zen for very valuable discussions. We acknowledge support from the Italian Ministry of
Education, grant PRIN 2010HXAW77.

References

[1] Agarwal PK, Billeter SR, Rajagopalan PT, Benkovic SJ, Hammes-Schiffer S. Network of coupled promoting motions in enzyme catalysis.
Proc Natl Acad Sci USA 2002;99:2794–9.

[2] Aleksiev T, Potestio R, Pontiggia F, Cozzini S, Micheletti C. PiSQRD: a web server for decomposing proteins into quasi-rigid dynamical
domains. Bioinformatics 2009;25:2743–4.

[3] Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M. Normal modes for predicting protein motions: a comprehensive
database assessment and associated Web tool. Protein Sci 2005;14:633–43.

[4] Amadei A, Ceruso MA, Di Nola A. On the convergence of the conformational coordinates basis set obtained by the essential dynamics
analysis of proteins’ molecular dynamics simulations. Proteins 1999;36:419–24.

[5] Amadei A, Linssen ABM, Berendsen HJC. Essential dynamics of proteins. Proteins 1993;17:412–25.



22 C. Micheletti / Physics of Life Reviews 10 (2013) 1–26
[6] Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, et al. Data growth and its impact on the SCOP database: new
developments. Nucleic Acids Res 2008;36:419–25.

[7] Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network
model. Biophys J 2001;80:505–15.

[8] Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal fluctuations in proteins using a single parameter harmonic potential. Fold Des
1997;2:173–81.

[9] Bakan A, Meireles LM, Bahar I. Prody: protein dynamics inferred from theory and experiments. Bioinformatics 2011;27:1575–7.
[10] Bartlett GJ, Borkakoti N, Thornton JM. Catalysing new reactions during evolution: economy of residues and mechanism. J Mol Biol

2003;331:829–60.
[11] Bavro VN, De Zorzi R, Schmidt MR, Muniz JR, Zubcevic L, Sansom MS, et al. Structure of a KirBac potassium channel with an open

bundle crossing indicates a mechanism of channel gating. Nat Struct Mol Biol 2012;19:158–63.
[12] Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, et al. A dynamic knockout reveals that conformational fluctuations influence the

chemical step of enzyme catalysis. Science 2011;332:234–8.
[13] Blundell T, Srinivasan N. Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. Proc Natl Acad Sci USA

1996;93:14243–8.
[14] Boehr DD, Dyson HJ, Wright PE. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase

catalysis. Biochemistry 2008;47:9227–33.
[15] Brooks BR, Janezic D, Karplus M. Harmonic analysis of large systems I. Methodology. J Comput Chem 1995;16(12):1522–42.
[16] Camps J, Carrillo O, Emperador A, Orellana L, Hospital A, Rueda M, et al. FlexServ: an integrated tool for the analysis of protein flexibility.

Bioinformatics 2009;25:1709–10.
[17] Capozzi F, Luchinat C, Micheletti C, Pontiggia F. Essential dynamics of helices provide a functional classification of EF-hand proteins.

J Proteome Res 2007;6:4245–55.
[18] Carnevale V, Pontiggia F, Micheletti C. Structural and dynamical alignment of enzymes with partial structural similarity. J Phys Condens

Matter 2007;19:285206.
[19] Carnevale V, Raugei S, Micheletti C, Carloni P. Convergent dynamics in the protease enzymatic superfamily. J Am Chem Soc

2006;128:9766–72.
[20] Carnevale V, Raugei S, Micheletti C, Carloni P. Large-scale motions and electrostatic properties of furin and HIV-1 protease. J Phys Chem

A 2007;111:12327–32.
[21] Cascella M, Micheletti C, Rothlisberger U, Carloni P. Evolutionarily conserved functional mechanics across pepsin-like and retroviral as-

partic proteases. J Am Chem Soc 2005;127:3734–42.
[22] Cascella M, Micheletti C, Rothlisberger U, Carloni P. Evolutionarily conserved functional mechanics across pepsin-like and retroviral as-

partic proteases. J Am Chem Soc 2005;127:3734–42.
[23] Chandonia JM, Hon G, Walker NS, Lo Conte L, Koehl P, Levitt M, et al. The astral compendium in 2004. Nucleic Acids Res 2004;32:189–92.
[24] Chennubhotla C, Bahar I. Signal propagation in proteins and relation to equilibrium fluctuations. PLoS Comput Biol 2007;3:1716–26.
[25] Chi CN, Elfström L, Shi Y, Snäll T, Engström A, Jemth P. Reassessing a sparse energetic network within a single protein domain. Proc Natl

Acad Sci USA 2008;105:4679–84.
[26] Chothia C. One thousand families for the molecular biologist. Nature 1992;357:543–4.
[27] Chothia C, Finkelstein AV. The classification and origins of protein folding patterns. Annu Rev Biochem 1990;59:1007–39.
[28] Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J 1986;5:823–6.
[29] Creighton T. Proteins, structure and molecular properties. 2nd edition. New York: W.H. Freeman and Company; 1993.
[30] Das A, Mahale S, Prashar V, Bihani S, Ferrer JL, Hosur MV. X-ray snapshot of HIV-1 protease in action: observation of tetrahedral

intermediate and short ionic hydrogen bond SIHB with catalytic aspartate. J Am Chem Soc 2010;132:6366–73.
[31] De los Rios P, Cecconi F, Pretre A, Dietler G, Michielin O, Piazza F, et al. Functional dynamics of PDZ binding domains: a normal-mode

analysis. Biophys J 2005;89:14–21.
[32] del Sol A, Tsai CJ, Ma B, Nussinov R. The origin of allosteric functional modulation: multiple pre-existing pathways. Structure

2009;17:1042–50.
[33] Delarue M, Sanejouand YH. Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic

network model. J Mol Biol 2002;320:1011–24.
[34] DePristo MA, Weinreich DM, Hartl DL. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet

2005;6:678–87.
[35] Echave J. Why are the low-energy protein normal modes evolutionarily conserved? Pure Appl Chem 2012;84:1931–7.
[36] Echave J, Fernández FM. A perturbative view of protein structural variation. Proteins 2010;78:173–80.
[37] Eisenmesser EZ, Bosco DA, Akke M, Kern D. Enzyme dynamics during catalysis. Science 2002;295:1520–3.
[38] Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, et al. Intrinsic dynamics of an enzyme underlies

catalysis. Nature 2005;438:117–21.
[39] Engel A, Gaub HE. Structure and mechanics of membrane proteins. Annu Rev Biochem 2008;77:127148.
[40] Falke JJ. Enzymology: a moving story. Science 2002;295:1480–1.
[41] Fanning AS, Anderson JM. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane.

J Clin Invest 1999;103:767–72.
[42] Fersht AR. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. New York: W.H. Freeman; 1999.
[43] Finkelstein A. Protein physics. Singapore: World Scientific–Academic Press; 2002.
[44] Fleming K, Kelley LA, Islam SA, MacCallum RM, Muller A, Pazos F, et al. The proteome: structure, function and evolution. Philos Trans

R Soc Lond B Biol Sci 2006;361:441–51.



C. Micheletti / Physics of Life Reviews 10 (2013) 1–26 23
[45] Frauenfelder H, Parak F, Young RD. Conformational substates in proteins. Annu Rev Biophys Biophys Chem 1988;17:451–79.
[46] Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins. Science 1991;254:1598–603.
[47] Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics 2012.

http://dx.doi.org/10.1093/bioinformatics/bts445.
[48] Garcia A. Large-amplitude nonlinear motions in proteins. Phys Rev Lett 1992;68:2696–9.
[49] Gerek ZN, Ozkan SB. Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response

scanning. PLoS Comput Biol 2011;7:e1002154.
[50] Gerstein M, Krebs W. A database of macromolecular motions. Nucleic Acids Res 1998;26:4280–90.
[51] Gerstein M, Lesk AM, Chothia C. Structural mechanisms for domain movements in proteins. Biochemistry 1994;33:6739–49.
[52] Glembo TJ, Farrell DW, Gerek ZN, Thorpe MF, Ozkan SB. Collective dynamics differentiates functional divergence in protein evolution.

PLoS Comput Biol 2012;8:e1002428.
[53] Go N, Noguti T, Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci USA

1983;80:3696–700.
[54] Golhlke H, Thorpe MF. A natural coarse graining for simulating large biomolecular motion. Biophys J 2006;91:2115–20.
[55] Hammes-Schiffer S, Benkovic SJ. Relating protein motion to catalysis. Annu Rev Biochem 2006;75:519–41.
[56] Hayward S, Kitao A, Berendsen HJC. Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal

mode analysis and molecular dynamics simulation of lysozyme. Proteins 1997;27:425–37.
[57] Hayward S, Kitao A, Go N. Harmonic and anharmonic aspects in the dynamics of BPTI: a normal mode analysis and principal component

analysis. Protein Sci 1994;3:936–43.
[58] Hensen U, Meyer T, Haas J, Rex R, Vriend G, Grubmüller H. Exploring protein dynamics space: the dynasome as the missing link between

protein structure and function. PLoS ONE 2012;7:e33931.
[59] Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature 2007;450:964–72.
[60] Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D. A hierarchy of timescales in protein dynamics is linked to enzyme

catalysis. Nature 2007;450:913–6.
[61] Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, et al. Intrinsic motions along an enzymatic reaction trajectory. Nature

2007;450:838–44.
[62] Hess B. Convergence of sampling in protein simulations. Phys Rev E 2002;65:031910.
[63] Hinsen K. Analysis of domain motions by approximate normal mode calculations. Proteins 1998;33:417–29.
[64] Hinsen K, Kneller GR. Solvent effects in the slow dynamics of proteins. Proteins 2008;70:1235–42.
[65] Hinsen K, Petrescu AJ, Dellerue S, Bellisent-Funel MC, Kneller G. Harmonicity in slow protein dynamics. Chem Phys 2000;261:25–37.
[66] Hinsen K, Thomas A, Field MJ. Analysis of domain motion in large proteins. Proteins 1999;34:369–82.
[67] Holm L, Park J. Dalilite workbench for protein structure comparison. Bioinformatics 2000;16:566–7.
[68] Holm L, Sander C. The FSSP database of structurally aligned protein fold families. Nucleic Acids Res 1994;22:3600–9.
[69] Holm L, Sander C. Mapping the protein universe. Science 1996;273:595–603.
[70] Humphrey W, Dalke A, Schulten K. VMD – visual molecular dynamics. J Mol Graph 1996;14:33–8.
[71] Jackson CJ, Foo JL, Tokuriki N, Afriat L, Carr PD, Kim HK, et al. Conformational sampling, catalysis, and evolution of the bacterial

phosphotriesterase. Proc Natl Acad Sci USA 2009;106:21631–6.
[72] Janezic D, Brooks BR. Harmonic analysis of large systems ii. comparison of different protein models. J Comput Chem 1995;16(12):1543–53.
[73] Janezic D, Venable R, Brooks BR. Harmonic analysis of large systems III. Comparison with molecular dynamics. J Comput Chem

1995;16(12):1544–56.
[74] Kamath G, Howell EE, Agarwal PK. The tail wagging the dog: insights into catalysis in R67 dihydrofolate reductase. Biochemistry

2010;49:9078–88.
[75] Keskin O, Jernigan RL, Bahar I. Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys J 2000;78:2093–

106.
[76] Kitao A, Hayward S, Go N. Energy landscape of a native protein: jumping-among-minima model. Proteins 1998;33:496–517.
[77] Kong Y, Karplus M. Signaling pathways of PDZ2 domain: a molecular dynamics interaction correlation analysis. Proteins 2009;74:145–54.
[78] Krebs W, Alexandrov V, Wilson C, Echols N, Yu H, Gerstein M. Normal mode analysis of macromolecular motions in a database framework:

developing mode concentration as a useful classifying statistics. Proteins 2002;48:682–95.
[79] Kundu S, Sorensen DC, Phillips GN. Automatic domain decomposition of proteins by a Gaussian network model. Proteins 2004;57:725–33.
[80] Kurkcuoglu O, Jernigan RL, Doruker P. Loop motions of triosephosphate isomerase observed with elastic networks. Biochemistry

2006;45:1173–82.
[81] Orellana L, Rueda M, Ferrer-Costa C, Lopez-Blanco JR, Chacon P, Orozco M. Approaching elastic network models to atomistic molecular

dynamics. J Chem Theor Comput 2010;6:2910–23.
[82] Law AB, Fuentes EJ, Lee AL. Conservation of side-chain dynamics within a protein family. J Am Chem Soc 2009;131:6322–3.
[83] Leo-Macias A, Lopez-Romero P, Lupyan D, Zerbino D, Ortiz AR. An analysis of core deformations in protein superfamilies. Biophys J

2005;88:1291–9.
[84] Lesk AM. Introduction to protein science: architecture, function and genomics. UK: Oxford University Press; 2004.
[85] Levitt M, Sander C, Stern PS. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol

1985;181:423–47.
[86] Levy RM, Srinivasan AR, Olson WK, McCammon JA. Quasi-harmonic method for studying very low frequency modes in proteins. Biopoly-

mers 1984;23:1099–112.
[87] Liu Y, Bahar I. Sequence evolution correlates with structural dynamics. Mol Biol Evol 2012;29:2253–63.

http://dx.doi.org/10.1093/bioinformatics/bts445


24 C. Micheletti / Physics of Life Reviews 10 (2013) 1–26
[88] Liu L, Gronenborn AM, Bahar I. Longer simulations sample larger subspaces of conformations while maintaining robust mechanisms of
motion. Proteins 2011;80:616625.

[89] Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999;286:295–9.
[90] Lopéz-Blanco JR, Garzón JI, Chacón P. iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics 2011;27:2843–50.
[91] Lu M, Poon B, Ma J. A new method for coarse-grained elastic normal-mode analysis. J Chem Theory Comput 2006;2(3):464–71.
[92] Maguid S, Fernandez-Alberti S, Echave J. Evolutionary conservation of protein vibrational dynamics. Gene 2008;422:7–13.
[93] Maguid S, Fernandez-Alberti S, Ferrelli L, Echave J. Exploring the common dynamics of homologous proteins. Application to the globin

family. Biophys J 2005;89:3–13.
[94] Maguid S, Fernández-Alberti S, Parisi G, Echave J. Evolutionary conservation of protein backbone flexibility. J Mol Evol 2006;63:448–57.
[95] Maritan A, Micheletti C, Banavar JR. Role of secondary motifs in fast folding polymers: a dynamical variational principle. Phys Rev Lett

2000;84:3009–12.
[96] Maritan A, Micheletti C, Trovato A, Banavar JR. Optimal shapes of compact strings. Nature 2000;406(6793):287–90.
[97] McCammon JA, Gelin BR, Karplus M, Wolynes PG. The hinge-bending mode in lysozyme. Nature 1976;262:325–6.
[98] Mendez R, Bastolla U. Torsional network model: normal modes in torsion angle space better correlate with conformation changes in proteins.

Phys Rev Lett 2010;104:228103.
[99] Meyerguz L, Kleinberg J, Elber R. The network of sequence flow between protein structures. Proc Natl Acad Sci USA 2007;104:11627–32.

[100] Micheletti C, Banavar JR, Maritan A. Conformations of proteins in equilibrium. Phys Rev Lett 2001;87:088102.
[101] Micheletti C, Banavar JR, Maritan A, Seno F. Protein structures and optimal folding from a geometrical variational principle. Phys Rev Lett

1999;82:3372–5.
[102] Micheletti C, Carloni P, Maritan A. Accurate and efficient description of protein vibrational dynamics: comparing molecular dynamics and

Gaussian models. Proteins 2004;55:635–45.
[103] Micheletti C, Orland H. Mistral: a tool for energy-based multiple structural alignment of proteins. Bioinformatics 2009;25:2663–9.
[104] Min W, Luo G, Cherayil BJ, Kou SC, Xie XS. Observation of a power-law memory kernel for fluctuations within a single protein molecule.

Phys Rev Lett 2005;94:198302.
[105] Ming D, Wall ME. Allostery in a coarse-grained model of protein dynamics. Phys Rev Lett 2005;95:198103.
[106] Miyashita O, Onuchic JN, Wolynes PG. Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins.

Proc Natl Acad Sci USA 2003;100:12570–5.
[107] Miyashita O, Wolynes PG, Onuchic JN. Simple energy landscape model for the kinetics of functional transitions in proteins. J Phys Chem B

2005;109:1959–69.
[108] Mizuguchi K, Deane CM, Blundell TL, Overington JP. HOMSTRAD: a database of protein structure alignments for homologous families.

Protein Sci 1998;7:2469–71.
[109] Morra G, Potestio R, Micheletti C, Colombo G. Corresponding functional dynamics across the Hsp90 chaperone family: insights from a

multiscale analysis of MD simulations. PLoS Comput Biol 2012;8.
[110] Morra G, Verkhivker G, Colombo G. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90

molecular chaperone full-length dimer. PLoS Comput Biol 2009;5:e1000323.
[111] Münz M, Hein J, Biggin PC. The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput

Biol 2012;8:e1002749.
[112] Münz M, Lyngso R, Hein J, Biggin PC. Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity. BMC

Bioinform 2010;11:188.
[113] Murzin A, Brenner S, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and

structures. J Mol Biol 1995;247:536–40.
[114] Nashine VC, Hammes-Schiffer S, Benkovic SJ. Coupled motions in enzyme catalysis. Curr Opin Chem Biol 2010;14:644–51.
[115] Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol

Biol 1970;48:443–53.
[116] Ojha S, Meng EC, Babbitt PC. Evolution of function in the “two dinucleotide binding domains” flavoproteins. PLoS Comput Biol

2007;3(7):e121.
[117] Orengo CA, Thornton JM. Protein families and their evolution—a structural perspective. Annu Rev Biochem 2005;74:867–900.
[118] Orozco M, Orellana L, Hospital A, Naganathan AN, Emperador A, Carrillo O, et al. Coarse-grained representation of protein flexibility.

Foundations, successes, and shortcomings. Adv Protein Chem Struct Biol 2011;85:183–215.
[119] Ortiz AR, Strauss CE, Olmea O. Mammoth (matching molecular models obtained from theory): an automated method for model comparison.

Protein Sci 2002;11:2606–21.
[120] Pang A, Arinaminpathy Y, Sansom MSP, Biggin PC. Comparative molecular dynamics—similar folds and similar motions? Proteins

2005;61:809–22.
[121] Pascual-García A, Abia D, Ortiz AR, Bastolla U. Cross-over between discrete and continuous protein structure space: insights into automatic

classification and networks of protein structures. PLoS Comput Biol 2009;5:e1000331.
[122] Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis T, et al. The CATH domain structure database and related resources Gene3D and

DHS provide comprehensive domain family information for genome analysis. Nucl Acids Res 2005;33:D247–51.
[123] Pegg SC, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, et al. Leveraging enzyme structure–function relationships for functional

inference and experimental design: the structure–function linkage database. Biochemistry 2006;45:2545–55.
[124] Perryman AL, Lin J-H, McCammon JA. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contri-

butions to drug resistance and a potential new target site for drugs. Protein Sci 2004;13:1108–23.
[125] Piana S, Carloni P, Parrinello M. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. J Mol Biol 2002;319:567–

83.



C. Micheletti / Physics of Life Reviews 10 (2013) 1–26 25
[126] Piana S, Carloni P, Rothlisberger U. Drug resistance in HIV-1 protease: flexibility-assisted mechanism of compensatory mutations. Protein
Sci 2002;11:2393–402.

[127] Pontiggia F, Colombo G, Micheletti C, Orland H. Anharmonicity and self-similarity of the free energy landscape of protein G. Phys Rev Lett
2007;98:048102.

[128] Pontiggia F, Zen A, Micheletti C. Small- and large-scale conformational changes of adenylate kinase: a molecular dynamics study of the
subdomain motion and mechanics. Biophys J 2008;95:5901–12.

[129] Porter CT, Bartlett GJ, Thornton JM. The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural
data. Nucl Acids Res 2004;32:D129–33.

[130] Potestio R, Aleksiev T, Pontiggia F, Cozzini S, Micheletti C. Aladyn: a web server for aligning proteins by matching their large-scale motion.
Nucleic Acids Res 2010;38:41–5.

[131] Potestio R, Pontiggia F, Micheletti C. Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins
in rigid subunits. Biophys J 2009;96:4993–5002.

[132] Provasi D, Artacho MC, Negri A, Mobarec JC, Filizola M. Ligand-induced modulation of the free-energy landscape of g protein-coupled
receptors explored by adaptive biasing techniques. PLoS Comput Biol 2011;7:e1002193.

[133] Pugalenthi G, Bhaduri A, Sowdhamini R. GenDiS: genomic distribution of protein structural domain superfamilies. Nucleic Acids Res
2005;33:252–5.

[134] Pérez A, Blas JR, Rueda M, López-Bes JM, de la Cruz X, Orozco M. Exploring the essential dynamics of b-B-DNA. J Chem Theory Comput
2005;1:790–800.

[135] Quesada V, Ordóñez GR, Sánchez LM, Puente XS, López-Otín C. The Degradome database: mammalian proteases and diseases of proteol-
ysis. Nucleic Acids Res 2009;37:239–43.

[136] Radkiewicz JL, Zipse H, Clarke S, Houk KN. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of
the relationship between peptide conformation and backbone NH acidity. J Am Chem Soc 2001;123:3499–506.

[137] Ramanathan A, Agarwal PK. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. PLoS Biol 2011;9:e1001193.
[138] Ramanathan A, Savol AJ, Langmead CJ, Agarwal PK, Chennubhotla CS. Discovering conformational sub-states relevant to protein function.

PLoS ONE 2011;6:e15827.
[139] Ranea JA, Sillero A, Thornton JM, Orengo CA. Protein superfamily evolution and the last universal common ancestor (LUCA). J Mol Evol

2006;63:513–25.
[140] Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res

2012;40:343–50.
[141] Rod TH, Radkiewicz JL, Brooks CL. Correlated motion and the effect of distal mutations in dihydrofolate reductase. Proc Natl Acad Sci

USA 2003;100:6980–5.
[142] Romo TD, Grossfield A. Validating and improving elastic network models with molecular dynamics simulations. Proteins 2011;79:2334.
[143] Rueda M, Chacón P, Orozco M. Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure

2007;15:565–75.
[144] Rueda M, Ferrer-Costa C, Meyer T, Pérez A, Camps J, Hospital A, et al. A consensus view of protein dynamics. Proc Natl Acad Sci USA

2007;104:796–801.
[145] Sachs JN, Engelman DM. Introduction to the membrane protein reviews: the interplay of structure, dynamics, and environment in membrane

protein function. Annu Rev Biochem 2006;75:707712.
[146] Sacquin-Mora S, Laforet E, Lavery R. Locating the active sites of enzymes using mechanical properties. Proteins 2007;67:350–9.
[147] Shakhnovich BE, Deeds E, Delisi C, Shakhnovich E. Protein structure and evolutionary history determine sequence space topology. Genome

Res 2005;15:385–92.
[148] Shatsky M, Nussinov R, Wolfson H. A method for simultaneous alignment of multiple protein structures. Proteins 2004;56:143–56.
[149] Skolnick J, Arakaki AK, Lee SY, Brylinski M. The continuity of protein structure space is an intrinsic property of proteins. Proc Natl Acad

Sci USA 2009;106:15690–5.
[150] Smith GR, Sternberg MJE, Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein–

protein complexes with an application to protein–protein docking. J Mol Biol 2005;347:1077–101.
[151] Song G, Jernigan RL. An enhanced elastic network model to represent the motions of domain-swapped proteins. Proteins 2006;63:197–209.
[152] Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ

domains. Science 1997;275:73–7.
[153] Southan C. Assessing the protease and protease inhibitor content of the human genome. J Pept Sci 2000;6:453–8.
[154] Stebbings LA, Mizuguchi K. HOMSTRAD: recent developments of the homologous protein structure alignment database. Nucleic Acids

Res 2004;32:203–7.
[155] Stein A, Rueda M, Panjkovich A, Orozco M, Aloy P. A systematic study of the energetics involved in structural changes upon association

and connectivity in protein interaction networks. Structure 2011;19:881–9.
[156] Suel GM, Lockless SW, Wall MA, Ranganathan R. Evolutionarily conserved networks of residues mediate allosteric communication in

proteins. Nat Struct Biol 2003;10:59–69.
[157] Sulkowska J, Kloczkowski A, Sen T, Cieplak M, Jernigan R. Predicting the order in which contacts are broken during single molecule protein

stretching experiments. Proteins 2007;71:45–60.
[158] Tama F, Sanejouand YH. Conformational change of proteins arising from normal mode calculations. Protein Eng 2001;14:1–6.
[159] Tang J, James MN, Hsu IN, Jenkins JA, Blundell TL. Structural evidence for gene duplication in the evolution of the acid proteases. Nature

1978;271:618–21.
[160] Teilum K, Olsen JG, Kragelund BB. Functional aspects of protein flexibility. Cell Mol Life Sci 2009;66:2231–47.



26 C. Micheletti / Physics of Life Reviews 10 (2013) 1–26
[161] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL-X windows interface: flexible strategies for multiple
sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–82.

[162] Tirion MM. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 1996;77:1905–8.
[163] Tobi D. Dynamics alignment: comparison of protein dynamics in the SCOP database. Proteins 2012;80:1167–76.
[164] Tsutsumi S, Mollapour M, Graf C, Lee CT, Scroggins BT, Xu W, et al. Hsp90 charged-linker truncation reverses the functional consequences

of weakened hydrophobic contacts in the n domain. Nat Struct Mol Biol 2009;16:1141–7.
[165] Tyndall JD, Nall T, Fairlie DP. Proteases universally recognize beta strands in their active sites. Chem Rev 2005;105:973–99.
[166] Vasko RC, Rodriguez RA, Cunningham CN, Ardi VC, Agard DA, McAlpine SR. Mechanistic studies of Sansalvamide A-amide: an allosteric

modulator of Hsp90. ACS Med Chem Lett 2010;1:4–8.
[167] Velázquez-Muriel JA, Rueda M, Cuesta I, Pascual-Montano A, Orozco M, Carazo JM. Comparison of molecular dynamics and superfamily

spaces of protein domain deformation. BMC Struct Biol 2009;9:6.
[168] Vishveshwara S, Ghosh A, Hansia P. Intra and inter-molecular communications through protein structure network. Curr Protein Pept Sci

2009;10:146–60.
[169] Weinreich DM, Delaney NF, Depristo MA, Hartl DL. Darwinian evolution can follow only very few mutational paths to fitter proteins.

Science 2006;312:111–4.
[170] Williams SG, Lovell SC. The effect of sequence evolution on protein structural divergence. Mol Biol Evol 2009;26:1055–65.
[171] Wolynes PG, Onuchic JN, Thirumalai D. Navigating the folding routes. Science 1995;267:1619–20.
[172] Xie L, Bourne PE. Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile align-

ments. Proc Natl Acad Sci USA 2008;105:5441–6.
[173] Yang H, Luo G, Karnchanaphanurach P, Louie T, Rech I, Cova S, et al. Protein conformational dynamics probed by single-molecule electron

transfer. Science 2003;302:262–6.
[174] Ye Y, Godzik A. FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res 2004;32:582–

5.
[175] Yesylevskyy SO, Kharkyanen VN, Demchenko AP. Hierarchical clustering of correlation patterns: new method of domain identification in

proteins. Biophys Chem 2006;119:84–93.
[176] Zeldovich KB, Shakhnovich EI. Understanding protein evolution: from protein physics to Darwinian selection. Annu Rev Phys Chem

2008;59:105–27.
[177] Zen A, Carnevale V, Lesk AM, Micheletti C. Correspondences between low-energy modes in enzymes: dynamics-based alignment of enzy-

matic functional families. Protein Sci 2008;17:918–29.
[178] Zen A, de Chiara C, Pastore A, Micheletti C. Using dynamics-based comparisons to predict nucleic acid binding sites in proteins: an

application to ob-fold domains. Bioinformatics 2009;25:1876–83.
[179] Zen A, Micheletti C, Keskin O, Nussinov R. Comparing interfacial dynamics in protein–protein complexes: an elastic network approach.

BMC Struct Biol 2010;10:26.
[180] Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J. On the origin and highly likely completeness of single-domain protein

structures. Proc Natl Acad Sci USA 2006;103:2605–10.
[181] Zheng W, Brooks B, Thirumalai D. Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most

robust to sequence variations. Biophys J 2007;93:2289–99.
[182] Zheng W, Brooks BR, Doniach S, Thirumalai D. Network of dynamically important residues in the open/closed transition in polymerases is

strongly conserved. Structure 2005;13:565–77.
[183] Zheng W, Brooks BR, Thirumalai D. Allosteric transitions in biological nanomachines are described by robust normal modes of elastic

networks. Curr Protein Pept Sci 2009;10:128–32.
[184] Zhou Y, Cook M, Karplus M. Protein motions at zero-total angular momentum: the importance of long-range correlations. Biophys J

2000;79:2902–8.


	Comparing proteins by their internal dynamics: Exploring structure-function relationships beyond static structural alignments
	1 Introduction
	2 Comparing protein internal dynamics: Methodological aspects
	2.1 Protein internal dynamics: Essential dynamics analysis of MD trajectories
	2.2 Essential dynamical spaces from elastic network models
	2.3 Anharmonicity of proteins free energy landscape
	2.4 Essential dynamical spaces of protein sub-portions
	2.5 Measures of similarities of two sets of essential dynamical spaces
	2.6 Best-matching essential dynamical spaces
	2.7 Beyond structural alignment: Dynamics-based protein alignment
	2.7.1 Aligning proteins by matching their essential dynamical spaces
	2.7.2 Aligning proteins by matching pairwise distance ﬂuctuations
	2.7.3 Aligning proteins by matching the mean square ﬂuctuation proﬁles


	3 Comparative studies of protein internal dynamics
	3.1 Common ﬂuctuation patterns in proteins with a Rossmann-like fold
	3.2 Dynamics-based alignment of proteases
	3.3 Dynamics-based alignment of PDZ domains
	3.4 Conservation of general dynamical patterns in protein families and superfamilies
	3.5 Conservation of speciﬁc functionally-oriented dynamics in enzymes
	3.6 Comparison of general dynamical patterns in members of the SCOP database
	3.7 Comparison of the structural variability in a protein superfamily with the internal dynamics of its members
	3.8 Dynamics-based alignment of proteins with different structure and function
	3.9 Comparing large-scale movements of multidomain proteins
	3.10 A dynamics-based metric for protein space

	4 Conclusions
	Acknowledgements
	References


