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Abstract: Normal mode analyses of homologous proteins at the family and superfamily level show

that slow dynamics are similar and are preserved through evolution. This study investigates how
the slow dynamics of proteins is affected by variation in the protein architecture and fold. For this

purpose, we have used computer-generated protein models based on idealized protein structures

with varying folds. These are shown to be protein-like in their behavior, and they are used to
investigate the influence of architecture and fold on the slow dynamics. We compared the

dynamics of models having different folds but similar architecture and found the architecture to be

the dominant factor for the slow dynamics.
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Introduction
The function of a protein is tied intimately with the

structural modifications it can undergo.1 Allosteric

proteins are obvious examples; their activity is regu-

lated by an effector molecule binding to a site

remote from the amino acids primarily responsible

for the molecular function (e.g., catalytic site of an

enzyme). In this case, the network of interactions

between the allosteric and active sites constitutes a

dynamical communication pathway within the pro-

tein structure. Beyond allosteric regulation, all pro-

teins have dynamical properties that might govern

the way their structures respond to their environ-

ment (e.g., membrane, substrates, and interacting

proteins). The biological role or function of each pro-

tein is thus dependent on global dynamical proper-

ties, which are encoded in its structure. The dynami-

cal property of a given protein might be seen as its

signature or personality1 and as such is as valuable

as information on sequence and structure.

The range of protein motions varies from small

and fast, local displacements to slow whole-domain

movements.1–3 Normal mode analysis has been suc-

cessfully used to investigate the slow motions of pro-

tein structures.4,5 The normal modes of a protein

characterize the deformations its structure can

undergo and classify them according to their ener-

getic cost. High-energy modes characterize fast, local

deformations, whereas low-energy modes correspond

to slow deformations with a high degree of collectiv-

ity, such as domain movements. Several methods for

normal mode analysis have been developed for use

with coarse-grained representations of protein struc-

tures, and normal mode analysis has become a popu-

lar tool for studies of large-scale motions in

proteins.4,6,7

Studies have shown that the slow dynamics are

conserved through evolution and that homologous

proteins show similar dynamical properties.8–10

Although the dynamical properties of six nonhomolo-

gous proteins sharing a common architecture was

analyzed by Keskin et al.,11 most of the studies focus

on evolutionary-related proteins at the level of fam-

ily or superfamily.

In this study, we take a step away from the

functional details of families and superfamilies and
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investigate the dynamical behavior of proteins at the

level of fold and architecture. The term ‘‘fold’’ is used

to describe the positions of the secondary structures,

their type, direction, and connectivity, whereas the

term ‘‘architecture’’ refers only to their type and

position. The term fold thus corresponds to the

topology level in the CATH classification,12 and

architecture corresponds to the architecture level in

CATH, but without direction of secondary structure

elements (SSEs). We use protein-like computer-gen-

erated models.13 Built using a modified protein

structure prediction pipeline,14 these models have

their architecture and fold defined at the time of

construction. A set of possible domain architectures

called Ideal Forms15 is used as a basis for the mod-

els, and variation in fold type is generated through

connecting the SSEs in all plausible ways.

Using computer-generated models rather than

entries from the Protein Data Bank (PDB)16 allows

us to compare the dynamics of protein structures

sharing various degrees of structural similarity

without being restricted only to experimentally

determined structures. The range of structural dif-

ferences between the models sharing the same fold

is in general comparable with what is found within

a superfamily. The pipeline yields models where we

know the fold by definition, and we can control

which folds are present in our dataset. No sequence

information is used except to provide secondary

structure predictions for the models. Two common

aba-layer folds, corresponding to thioredoxin and fla-

vodoxin-like in the SCOP hierarchy,17 are used to

verify the dynamical behavior of our models.

In this work, we investigate first whether ideal-

ized models can be used to recapitulate the dynami-

cal behavior of the fold it represents, and second, we

investigate the slow dynamics of fold and architec-

ture. The models we use have clearly defined sec-

ondary structures, and it is easy to generate models

containing only SSEs. These models provide the ba-

sis for determining how much influence the loop con-

nections have on the dynamics. We then compare

the dynamics of models with the same architecture

but with different folds to see how much difference

can be detected.

Results
All models used were generated using the procedure

described in the section entitled ‘‘Generation of mod-

els’’ from three protein sequences (denoted probe

sequences), PDB ids 1f4p, 3chy and 2trx (see Sup-

porting Information). Their structures, extracted

from the PDB, are referred to as the native struc-

ture and their fold as the original fold. We calculated

the normal modes of each model and of the native

structures using an elastic network model and a

coarse-grained description of the molecules, where

each amino acid is represented by a particle located

at the position of its Ca atom.18 Using the normal

modes, we computed the associated fluctuation pro-

files that were used to characterize the deformation

patterns of the models and native structures. Note

that all particles were treated similarly, and thus,

no sequence information was retained in the normal

mode calculations (or in the fluctuation profiles).

Spearman rank correlation was used to assess the

similarity between fluctuation profiles.

Fluctuation profiles of original fold models

versus X-ray representatives

We compared the fluctuation profiles of the native

proteins to all models that shared the original fold

definition. Examples of the fluctuation profiles of

each of the three probes can be seen in Figure 1,

where the fluctuation values for all residues are

plotted sequentially, both for model and correspond-

ing native structure (see ‘‘Methods’’ section for

details).

The model fluctuation profiles shown in Figure

1 had the highest correlation to the native structure.

A summary of the correlation values of all the mod-

els can be found in Table I. The mean correlation for

all sets was greater than 0.5. As the models and

native structure have the same topology and

sequence, all residues (aligned one-to-one) were used

to compute the correlation coefficient.

Figure 1 shows clearly that the models are simi-

lar to their native structures in terms of fluctuation.

While the amplitude varies, the shape is similar,

and the regions of the structures vary in the same

way. The largest fluctuations are found in the loop

areas or at the end of SSEs where there is an unre-

strained loop.

To verify that this similarity is held for all mod-

els and was not due to chance, the fluctuation pro-

files of the models were compared with a random set

of profiles (see ‘‘Creating random fluctuation pro-

files’’ section) using rank correlation. Figure 2 shows

that there is a clear difference in distributions of

correlation coefficients when the models were com-

pared with the native structure profiles and with

the random profiles.

Some of the random profiles obtained aligned

the same secondary structures to each other, yield-

ing a somewhat wide distribution of correlation coef-

ficients for the random set. Representing random

profiles as simple reversions of the native structure

profiles was explored; however, this gives some anti-

correlation, as b-strands were aligned to a-helices in

the profiles. The distribution of correlation coeffi-

cients for comparisons with random profiles is cen-

tered around 0, whereas the profiles of the models

compared with the native profiles are centered

between 0.5 and 0.6. A summary of the random

rank correlations can be found in Table II.
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We also compared the differences between the

fluctuation profiles for our comparisons of the mod-

els to the native structures, with the differences

occurring between natural proteins as described in

‘‘Comparing generated models with natural proteins’’

section. As seen in Figure 3, the differences between

the native structures and the models with the same

fold definition are comparable with what is found

between natural protein domains of the same SCOP

superfamily, with the fluctuation of the models being

somewhat more robust to structural variation than

the SCOP domains. The correlation coefficients

obtained for the comparisons shown in Figure 3

were generally lower than those found in Table I

because of the differences in the alignments used for

comparisons. This was probably due to the model

alignments being manually optimized for maximal

correspondence between SSEs, a property that can-

not be expected to be reproduced perfectly by the

DALI algorithm that was used to compute the

alignments.

Architecture models versus original fold models

To investigate the impact of loops on the dynamics

of the structure, we generated architecture models

containing only the secondary structures and not

the connecting loops before computing the normal

modes used to construct the fluctuation profiles. The

profiles of the architecture structures were then

compared with the model from which the reduced

architecture structure was derived. Figure 4 shows

fluctuation profiles similar to those in Figure 1, one

plot for each probe protein in the test set. Broken

lines in the plot indicate the loop regions that were

removed before computing the normal modes of the

architecture. Removing the loops resulted in many

loose ends in the structure, and as seen from the

plots, this is accompanied by increased fluctuations,

causing some reduction of the correlation. Table III

shows the summary statistics for all correlation coef-

ficients obtained from comparing the fluctuation pro-

files of the architecture models with their full mod-

els. It can be seen that the correlation is very high,

averaging more than 0.85, and all the different

native structures yielded models with similar flexi-

bilities, even though the folds were different.

Fluctuation profiles of alternative folds versus
X-ray representatives

To determine the fold’s contribution to the dynamics,

we used models based on the same secondary struc-

ture content but with different connectivity (Figs. 7

and 8) and computed fluctuation profiles for them.

We aligned the profiles as described in ‘‘Aligning

Figure 1. Fluctuation profiles (residue number along X-axis,

and fluctuation value along Y-axis) for models and native

structures. The fluctuation values of the native structure are

indicated in black, and the model values are indicated in

gray. (A) The fluctuation profile for a 1f4p model; (B) a 3chy

model, both Rossmann fold; and (C) 2trx fluctuation

profiles (glutaredoxin). The gray bars indicate b-strands,
and the black bars indicates a-helices. Table I. Summary Statistics for Rank Correlation

Comparison of Fluctuation Profiles Between Native
Structure and Models Sharing the Original Fold

Protein Min
1.

quartile Median Mean
3.

quartile Max

1f4p 0.104 0.517 0.550 0.536 0.590 0.718
3chy 0.505 0.557 0.576 0.591 0.633 0.667
2trx 0.338 0.510 0.613 0.588 0.670 0.744
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equivalent parts of different folds’’ section and com-

puted the rank correlation coefficient between the

fluctuation profiles of the models and the corre-

sponding native profile.

Figure 5 shows the distributions of the correla-

tion coefficients for fluctuation profiles of all model

folds, where the equivalent parts of the structures

were aligned (both original fold and alternatives). In

general, the original fold models had higher correla-

tion coefficients than the alternative fold models.

The distances between the sample distributions

of correlation coefficients shown in Figure 5 are

shown in Table IV. For each fold, we report the

Hodges-Lehmann estimate, which is the median of

the differences between all possible pairings of

observations from the compared samples. Table IV

also shows the P-values from a two-sided Wilcoxon

rank sum test for differentiating between the distri-

butions. For the most part, the distributions over

the alternative folds exhibited a clear difference for

both measures when tested against the original fold.

Interestingly, the Hodges-Lehmann estimate for the

knotted fold (1f4p_c) was lower than both of the

strand swap alternatives (1f4p_a and 1f4p_b), indi-

cating that it is harder to distinguish the original

fold from the complex knot than from the strand

swaps. Finally, the Hodges-Lehmann estimates for

the same fold alternative from the Rossmann fold

probes (1f4p_b and 3chy_b) varied.

Table V summarizes the correlation coefficient

distributions for all probes. The original fold models

had a somewhat higher correlation to the fluctuation

profiles of the native structures than the fold alter-

natives had, as indicated by the histograms. We

checked the aligned fluctuation profiles against the

same type of random background as was done for

the models with loops, and the results were compa-

rable with those shown in Figure 2.

To get a better understanding of where the dif-

ferences in fluctuation profiles occurred, we plotted

the aligned fluctuation profile of the native probe

along with the fluctuation profile for each model

(one plot for each fold). Figure 6 shows the fluctua-

tion profiles of all the fold alternatives for the 1f4p

probe. As expected, some of the ends of the SSEs

were fluctuating more than in the native; however,

the trend was generally the same. The plots show

the fluctuations of the aligned residues, and all loops

are indicated with gray bars. The second helix was

poorly defined in the sequence (and in the native

structure) and was quite flexible in the models as

well, as can be seen from the higher fluctuation val-

ues. The fluctuation profiles of a few models

diverged from the native, in particular seen in the

first few SSEs of the original fold (top left plot), but

overall the variability was no more than that would

Figure 2. Histogram showing the distributions of correlation

coefficients for model profiles compared with the native

profiles (black bars) and with the random profiles (light gray

bars). (A) 1f4p, (B) 3chy, and (C) 2trx. X-axis shows

correlation values, and Y-axis shows proportion of models

having a correlation value in a specific interval.

Table II. Summary Statistics for Correlation
Coefficients of Fluctuation Profiles Between
Random Profile Set and Model Set

Protein Min
1.

quartile Median Mean
3.

quartile Max

1f4p �0.617 �0.157 0.004 0.0002 0.156 0.531
3chy �0.467 �0.155 �0.003 0.003 0.158 0.574
2trx �0.605 �0.152 0.0005 �0.0003 0.147 0.528
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Figure 3. Distribution of structural properties and rank correlation of fluctuation profiles in aligned SCOP domains and

generated models aligned to their native counterpart. SCOP domain pairs are colored according to the classification in SCOP

common for the two aligned domains: same class only (open green circles); same fold, but different superfamily (green

crosses); same superfamily, but different family (blue crosses) and same family (open blue circles). The comparisons with the

generated models are shown as red open squares. The correlation coefficient refers to the rank correlation over the aligned

parts of the fluctuation profiles. RMSD (Å) is plotted on the Y-axis of both plots, while the alignment length is the X-axis in (A)

and correlation coefficient is the X-axis in (B). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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be expected. The fourth helix (SSE 8), which had dif-

ferent loop connections, varied more in the fold

alternatives than in the native models, whereas the

first part of the structure varied less.

Discussion
We computed the normal modes and fluctuation pro-

files of three protein structures (1f4p, 3chy, and

2trx) as well as numerous models derived from the

same sequences and architectures. Some models

shared the original fold while some had alternative

folds. We demonstrate that the fluctuation profiles of

the models are comparable with those in native

structures of the same fold (Table I) and that the

similarity is not occurring by chance. Comparisons

with values obtained for protein pairs belonging to

SCOP families and superfamilies also confirms this.

We see from Figure 3 that the comparison

between our models and their corresponding native

structures lie in the top range of correlation coeffi-

cients obtained for naturally occurring protein

domains belonging to the same superfamily,

although the structural differences (RMSD) are in a

range common for domains of different superfami-

lies. This may be due to our models being derived

from the same sequence (the native protein’s

sequence) and from a sequence alignment from the

same family. The SCOP pairs will also generally

align domains with a larger size difference than the

comparisons of models with native folds, affecting

the average amount and size of gaps in the align-

ments. All our models have similar secondary struc-

ture definitions to the corresponding native struc-

ture. In terms of the actual structural diversity

present, we represent only a small fraction of what

is found in naturally occurring proteins. The similar-

ity in secondary structure definitions mean that

although there are differences in the coordinates,

the SSEs are well aligned to each other and the

occurence of partial alignments of SSEs is unlikely.

This means that the variation in fluctuation profiles

can be smaller than that for naturally occurring pro-

teins, where the structural variability around the

gaps in the alignment can be larger.

As no information specific to residue type is

included in the normal mode analysis, we could

investigate the contribution of fold regardless of

sequence information. This also eased the work of

aligning equivalent regions of different folds, and

the robustness of structure and dynamics with

respect to sequence variation8 indicates that this is

a reasonable approximation.

Using models where we could control the fold

meant that we could choose folds that diverged grad-

ually from the original. Our models represent folds

that are close to the original, where one or two SSEs

Figure 4. Fluctuation profiles of architecture models (gray

lines) and their respective full models (black lines). (A) 1f4p,

(B) 3chy and, (C) 2trx. Broken lines indicate gaps in the

alignment and follow the secondary structure assignment.

Table III. Summary Statistics for Rank Correlation
Coefficients of Comparison of Fluctuation Profiles for
Full Models and Their Architecture Equivalent

Protein Min
1.

quartile Median Mean
3.

quartile Max

1f4p 0.790 0.850 0.867 0.872 0.895 0.951
3chy 0.795 0.833 0.844 0.855 0.886 0.913
2trx 0.736 0.839 0.862 0.861 0.883 0.930
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change direction, or where a loop turns into a

strand, to more complex changes involving strand

swaps and even a knot.

The second aim of this work was to investigate

whether the connectivity (fold) or the architecture,

that is, the positions of the SSEs, was most impor-

tant in determining the slow dynamics of a struc-

ture. To align different folds, we had to decide which

parts of the structure to compare. We settled on

comparing the profiles of residues in SSEs in the

same position in the architecture. We used only the

architecture residues to compute the correlation

coefficients; however, the contribution of the loops to

the fluctuation profiles was still preserved as all res-

idues were used to compute the normal modes. We

decided not to treat SSEs of different orientations in

any specific way, and therefore, we aligned the resi-

dues from the N- to C-terminal end regardless of

which direction the SSEs had in the models. As

expected, our calculations showed that changing the

direction of the SSEs influences the dynamics as

illustrated by the 2trx fold.

The manner in which we chose equivalent resi-

dues in different models (and native structures) for

comparisons was the same for all models and was

based solely on the secondary structure prediction.

Although no sequence information was used, the corre-

lation coefficients for the aligned models with original

folds were comparable with the same models aligned

one-to-one with the native structures (Tables I and V).

Figure 5. Histograms of the distribution of rank correlation

coefficients for comparison between aligned fluctuation

values of native (X-ray) profiles and all fold alternatives (also

original). Each fold is represented with different shading,

the original fold in dark gray. The correlation coefficients

are plotted along the X-axis, and the relative number in

each group is indicated along the Y-axis.

Table IV. P-Values from Wilcoxon Rank Sum Tests and
Hodges-Lehmann Estimates from Wilcoxon Exact Test
for Difference Between Distributions of Rank
Correlation Coefficients for Different Folds

Fold 1 Fold 2 P-value Hodges-Lehmann

1f4p 1f4p_a 0.001235 0.1154503
1f4p 1f4p_b 2.708e�06 0.2208067
1f4p 1f4p_c 0.005211 0.0830413
3chy 3chy_a 0.001116 0.1070684
3chy 3chy_b 0.001349 0.1018550
2trx 2trx_a 0.08757 0.0740576
2trx 2trx_b 2.681e�05 0.2182837
2trx 2trx_c 0.5207 0.03069997

Table V. Summary Statistics for Rank Correlation
Coefficients of Comparisons of Fluctuation Profiles
Between Native Structures and Models With
Different Folds

Fold Min
1.

quartile Median Mean
3.

quartile Max

1f4p �0.119 0.427 0.490 0.468 0.538 0.694
1f4p_a 0.227 0.303 0.391 0.371 0.430 0.574
1f4p_b 0.101 0.216 0.255 0.272 0.347 0.507
1f4p_c 0.280 0.365 0.399 0.409 0.445 0.538
3chy 0.547 0.612 0.639 0.635 0.669 0.704
3chy_a 0.361 0.496 0.523 0.529 0.594 0.672
3chy_b 0.297 0.467 0.517 0.522 0.607 0.686
2trx 0.303 0.498 0.672 0.628 0.747 0.808
2trx_a 0.421 0.518 0.573 0.575 0.624 0.711
2trx_b 0.241 0.374 0.454 0.434 0.489 0.565
2trx_c 0.475 0.571 0.629 0.625 0.680 0.761

The top row for each protein shows the data for models
with the original fold. The names given to the different
folds can be found in Figures 7 and 8.
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We found that the architecture by far dominates

fold in determining the slow dynamics. This is rather

intuitive when one thinks about the core of the pro-

tein with its densely packed structural elements and

tight interactions between amino acids. Conversely,

the loops are more exposed to the surface, and the

interaction network is more sparse. For the same rea-

son, the dynamics of the core is expected to show a

higher degree of collectivity than the loops. Keskin

et al.11 reached a similar conclusion on the impor-

tance of architecture in protein dynamics using an

approach slightly different from ours; they used an

isotropic network model and X-ray structures of six

proteins sharing the same fold (Rossmann fold-like),

while we used an anisotropic network model and a

larger data set of computer-generated models.

Although architecture is the dominating factor,

the loop contribution cannot be overlooked com-

pletely as shown from the analysis of the dynamics

of the alternative folds. We show that the distribu-

tions of Spearman rank correlation coefficients are

in general different from those of the original folds

(the distributions are not likely to be similar). There

does not seem to be a clear relationship between

how different two folds are and how different the

fluctuation profiles are. The distribution of correla-

tion coefficients from the knotted fold is similar to

the distribution of the original fold models. Also, the

same alternative fold with a strand swap, 1f4p_b

and 3chy_b, has very different distances to their

original folds in terms of correlation. The probe

sequences are of different lengths, which may

impact these results. Another possibility is that one

set of models has more interactions due to longer

SSEs; however, the difference may also be an indica-

tion of the limit of this type of analysis.

The comparison by Spearman rank correlation is

stringent in that it treats all regions of the structures

similarly; the central positions of the SSEs located in

the model cores are treated the same way as residues

in loops. Thus, comparisons do not include a bias

toward the intuitively most rigid regions.

We believe that the type of computer-generated

models we used is a powerful and reliable tool to

investigate the dynamics of protein folds. Further-

more, the protocol we developed for fold comparisons

may be expanded on and used to address questions

about the conservation of dynamics in evolution.

Our study shows that while the architecture is domi-

nating in determining fluctuation profiles, the fold

cannot be disregarded completely.

Methods

Normal modes calculations

The possible deformations of the native structures

and the generated models were characterized by cal-

culating the normal modes of an elastic network

Figure 6. Fluctuation profiles of equivalent residues for the

1f4p probe. (A) The original fold, (B) an inner strand swap,

(C) an outer strand swap, and (D) the knotted fold. The gray

lines are the model fluctuation profiles, and the thick black

line is the profile of the native structure. The gray bars

indicate loops. The number along the X-axis corresponds to

the SSE numbering in the topmost diagram in Figure 7.
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representation of the structures. The elastic network

representation used18 represents each residue as a

point, located at its Ca-position. The interaction

between two such points is described by the pair-

potential19:

UijðrÞ ¼ kjR0
ijjðjrijj � jR0

ijjÞ2; (1)

with:

kðrÞ ¼

8:6� 105kJmol�1 nm�3 � r� 2:39

�105 kJmol�1 nm�2; for r < 0:4 nm

128 kJnm4 mol�1 � r�6; for r � 0:4 nm:

8>>>><
>>>>:

(2)

Here, rij is the pair distance vector between the

two residues (or points), and R0
ij is the corresponding

pair distance vector in the input configuration. The

input configuration is defined to be a local minima of

the potential. The potential energy of a configuration,

R, of the entire elastic network is then taken to be:

UðRÞ ¼
X

all pairs i;j

¼ UijðRi �RjÞ: (3)

This approximates the residue interactions by a

harmonic expression and assumes that the input

configuration corresponds to a local minima of the

true potential.

The normal modes are the eigenvectors of the

matrix K of the second order derivatives of the

potential U:

Kij ¼ @2Uij

@ri@rj
(4)

As we aim to explore the dynamics of architec-

ture and fold independent of the sequence, we

express the normal modes in Cartesian coordinates

rather than the commonly used mass-weighted alter-

native. Each normal mode specifies a pattern of de-

formation as a vector of size 3N, N being the number

of residues in the structure. The corresponding

eigenvalue is the energetic cost of deforming the

elastic network unit length along this mode so that

low-energy modes are interpreted as representing

the slow, collective motions of the structure and

high-energy modes as representing the fast and

more local motions of the structure. The six lowest

modes have eigenvalues of zero and correspond to

rotations and translations of the structure. These

are referred to as trivial modes and are ignored in

subsequent analyses. The MMTK package20 was

used to calculate the normal modes.

The 3N-sized vectors, representing the deforma-

tion according to a mode, can be broken down to N

displacement vectors of size 3 describing the dis-

placements of each residue in this deformation pat-

tern. The overall fluctuation of each residue can be

described as a sum over its displacement in each

mode, weighting the lower energy modes favorably

relative to the higher energy modes. Specifically, we

calculate the fluctuation value for each residue as

follows:

ai ¼
Xn
j¼0

jdijj2
kj

; (5)

where kj is the eigenvalue of mode j, n is the num-

ber of modes, and dij is the displacement vector for

residue i in mode j. This expresses the fluctuations

in units of nm2 (kBT)
�1, where kB is the Boltzmann

constant and T is the temperature, which is held

constant for all our analyses.

The fluctuation values for all residues give a

fluctuation profile for a structure. As done in

Refs. 9, 21, 22, we borrow a correlation measure

from statistics to quantify the association between

two fluctuation profiles. Specifically, we use Spear-

man rank correlation as this allows us to compare

the shape of the profiles rather than the specific val-

ues. The rank correlation then represents the degree

to which the two profiles behave in the same man-

ner. If the structures are identical, the fluctuation

profiles will be identical as well, giving a correlation

of 1. If the correlation is around 0, the fluctuation

profiles are as similar as would be expected from

randomly assigning fluctuations to the residues of

the compared structures.

Generation of models

Models were generated using a modified protein

structure prediction pipeline,14 which is summarized

here in brief. The overall secondary structure of the

models was found by predicting secondary structure

from multiple sequence alignments from real pro-

teins and the probe sequence. The secondary struc-

ture content dictated plausible architectures.* A

rough Ca model with loop connections was then mod-

eled given the positions of the SSEs on the scaffold.

Some folds were not allowed, following rules derived

from actual folds found in the PDB. The sequence

was then allowed to relax and shift to fit on the

structure using a threading method that takes

account of the secondary structure prediction and

buried hydrophobic side chains.

These rough structures have idealized distances

between Ca-positions and SSEs, and the models

were then refined using a modeling protocol that

*Architecture corresponds to the architecture in CATH without
directionality of SSEs, and fold corresponds to the topology
description giving the order, position, and direction of SSEs.
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relaxed the Ca-coordinates and added backbone

atoms before refining the models.

At each step, the models were ranked according

to relevant criteria and only the most protein-like

models were used.13,14 At the level of architecture

and fold, only architectures resulting in compact, re-

alistic models were chosen. Models with a reasona-

ble solvent exposure and a good match between the

predicted secondary structure and burial in the

model were retained.14 Some models were excluded

based on unlikely loop connections, for example,

loops crossing on the same face or left-handed con-

nections between b-strands. The natural variation of

SSEs was taken into account so that all folds were

within what occurs naturally.13 The sequences were

allowed to shift over the template structure, and the

models with the best hydrophobic burial were

refined from the level of Ca coordinates to full back-

bone. Finally, the models were refined with respect

to bond lengths, bond angles, torsion angles, and

other interaction terms.23

Creating random fluctuation profiles

To demonstrate that our models had meaningful dy-

namics, we needed a random background distribu-

tion to test against. Comparing fluctuation profiles

of different structures required that the natural var-

iation of similar structures was represented, as well

as a background where there should be no

similarity.

As with any characteristic of protein structures,

what may constitute random is not well defined.24

Figure 7. Rossmann fold topology, original, and the four different topologies (two different protein probes). Triangles

represent b-strands, and circles represent a-helices. The colors designate the direction of the SSEs, dark gray starting at the

back of the page coming at you, and light gray starting in front and traveling back through the page (N-C terminal). The SSEs

of the original fold are enumerated in the N-C terminal direction. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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The secondary structure content should still be

defined, as most structures (and all of our test mod-

els) have clearly defined SSEs. The length of the

protein must also be similar. Finally, the profiles

should be smooth, as the connectivity between resi-

dues influences the characteristics, for example,

dynamics, of the next residues.

To satisfy these demands, we used the fluctua-

tion profile of the native protein structures as a base

to generate a set of random fluctuation profiles. We

reversed the profiles and then permuted them by

taking the first three fluctuation values and append-

ing them to the end of the list, breaking up the peri-

odicity of the SSEs (both strands and helices). This

procedure was repeated for the length of the list (of

fluctuation values), giving a large set of semirandom

profiles that all had the same overall secondary

structure content and interval of fluctuation values

as the real structures have, while preserving the

length and smoothness of the profiles.

Aligning equivalent parts of different folds
To align different folds to each other, we aligned the

SSEs in equivalent positions on the architecture and

disregarded the loops. All residues were used to

compute the normal modes, but only the fluctuation

values in SSEs were used to compute the correlation

coefficient between different profiles. The two-

dimensional representations of the folds in Figures 7

and 8 show that the architecture of all folds is iden-

tical (with the exception of an extra b-strand in one

fold). In essence, the SSEs in the same position in

the architecture were compared with each other.

The secondary structure prediction was used to find

the start and end points of each SSE.

The top elements of Figures 7 and 8 show the enu-

meration of the SSEs in the original folds. Models with

the original fold did not require any rearrangements

as the order of SSEs of the native structure was used

as a basis. For 1f4p_b, which contains a strand swap,

the SSEs were rearranged, giving an SSE order of (1,

2, 3, 4, 5, 6, 9, 10, 7, 8). The knotted fold, 1f4p_c, had a

larger fold rearrangement. For example, the seventh

b-strand (sequentially) is in position one (b-strand
number two from the left), while the first b-strand in

the sequence is in position five.

For the glutaredoxin fold variants, the fold

alignments were easier, as these folds exhibited

Figure 8. Glutaredoxin fold topologies, both original and three fold variants. The coloring scheme and drawing method

matches Figure 7. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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fewer differences. Only the last parts of the struc-

ture were rearranged; however, for consistency, we

discounted the loops in these models as well.

Although the fluctuation values of the loops in

all models were ignored in the comparisons, the con-

tribution of the loops to the overall structure was

taken into account as they are included in the nor-

mal mode calculations.

Comparing generated models with

natural proteins
To compare results obtained for the generated mod-

els with equivalent results obtained for naturally

occurring protein domains, a dataset of 760 pairs of

such domains was constructed by choosing pairs of

varying similarity from the ASTRAL/SCOP40 com-

pendium (release 1.73),25 which offers structural

data for a selection of protein domains sharing no

more than 40% sequence identity. The pairs were

randomly chosen under the constraints that both the

different classes and folds of the SCOP hierarchy

and the different levels of similarity should be

evenly represented. With respect to different levels

of similarity, this meant that 25% of the set were

classified as the same SCOP family, 25% were classi-

fied as the same SCOP superfamily (but as different

family), 25% were classified as the same SCOP fold

(but as different superfamily), and 25% shared only

the SCOP class. All alignments and structural com-

parisons were performed with DaliLite.26,27

Dataset
We chose two aba sandwiches as starting points for

this study, the flavodoxin-like Rossmann fold and

glutaredoxin, a thioredoxin fold. These are similar in

architecture, but the folds are quite dissimilar (see

the topmost elements of Figs. 7 and 8). The Ross-

mann folds, PDB codes 1f4p (147 residues) and 3chy

(128 residues), and one glutaredoxin fold, PDB code

2trx (108 residues), were used as probes to generate

models. The sequence was used only to get a second-

ary structure prediction (in a multiple alignment

with other members of the same sequence family).

The number of residues, secondary structure predic-

tion, and architecture were then used to generate

models for each protein. We generated models that

had the same fold as the probe proteins (original

fold), and some with a different fold. Figures 7 and 8

show both the original and the alternative folds for

the Rossmann fold probes and the glutaredoxin

probe, respectively. The number of models for each

fold varied somewhat from 10 (Rossmann fold based

on the 3chy probe) to a little more than 20.

The ensemble of models sharing the same fold

should be comparable with a superfamily or fold in

the SCOP classification.17 Measuring on a residue-

to-residue basis gives RMSD values of between 3

and 6 Å for models with the original fold superposed

on the native probe structure. The similarity

between the models was around 3–4 Å on average,

although some models were more similar and had

an RMSD value of as low as 1 Å.

We are interested in how the large-scale motions

change between folds, and therefore, we chose mod-

els with varying levels of fold differences. We

included examples of strand swaps for all starting

probes, both in the middle of the sheet and at the

edge. Some folds also had SSEs that were reversed

in direction. Finally, one glutaredoxin alternative

had an extra strand and one of the Rossmann fold

probes was knotted, giving altogether seven alterna-

tive folds. One alternative fold was represented by

both Rossmann fold probes.
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