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INTRODUCTION

Proteins motions encompass all time scales, but the

most functionally relevant ones often occur at scales of

micro- to millisecond. Such motions are highly collective

in nature, involving many degrees of freedom; moreover,

they are subject to solvent damping, rendering the

motions anharmonic. Normal mode analysis (NMA) has

emerged as a very popular technique for studying these

motions, despite being a harmonic technique. It is har-

monic in that it involves diagonalizing a force-constant

matrix, or Hessian, H, into a matrix of eigenvectors (U)

describing the directions of the harmonic motion and a

diagonal matrix of eigenvalues (L), the square root of

which are the frequencies associated with the correspond-

ing eigenvectors.

H ¼ UKUT ð1Þ

Elastic network models (ENM), like the anisotropic

network model1,2 and Gaussian network model

(GNM),3 have simplified NMA by reducing the potential

to a single-parameter Hooke’s law potential energy. The

Gaussian network model is useful for predicting fluctua-

tions but not directions of motions, as the three NMA

degrees of freedom for a given atom are equal. ANM,

however, is able to predict directions of motion and fluc-

tuations. ENM has the key advantage of having a force-

constant matrix that is easy to calculate and does not

require a stringently minimized structure. The minimiza-

tion required within the framework of MM is often a

nontrivial task and has a tendency to distort the protein.

In ENM, the original structure is automatically at a mini-

mum with respect to the harmonic potential. Recently, a
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ABSTRACT

Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is

largely due to the advent of coarse-graining techniques, particularly Hooke’s Law-based potentials and the rotational–trans-

lational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new

method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients,

which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85–90% compared

with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1–4 res-

idues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster

RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Sig-

nificantly, we report superior correlation of DCRTB with B-factors compared with 1–4 residue per block RTB. Finally, we

show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples.
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promising method known as the minimalist network

model was developed that allows MM force field-based

NMA to be performed without prior minimization by

modifying the original Hessian to be positive definite.4

Another advance in coarse-grained NMA is rotational-

translational blocking (RTB).5,6 In this technique, the

original Hessian matrix is projected onto a smaller sub-

space defined by rigid groups of atoms. The resulting

eigenvectors represent combined rigid motions on the

blocks. Reduction of the Hessian to be diagonalized saves

substantial computational effort. In many RTB methods,

rigid blocks are defined largely as a single residue or

short polypeptide. In their original report of the RTB

method, Tama et al. did attempt coarser partitioning by

dividing the system into blocks according to secondary

structure. This blocking performed reasonably well,

though not as good as a finer, 1–5 residue-per-block par-

titioning.

It has been shown that both the RTB and the ENM

yield normal modes that are comparable to traditional

NMA derived from molecular mechanics force fields but

come at a greatly reduced computational cost.7,8 Of clear

importance is that the normal modes (usually some com-

bination of low-frequency modes) adequately approximate

the experimentally determined direction of motion. Krebs

et al.8 showed that the three slowest modes can often ap-

proximate biologically relevant conformational change.

Others have undertaken further efforts to develop

coarse-grained NMA approaches that either reduce com-

putation time or improve accuracy. Ahmed and Gohlke9

extended the RTB method by partitioning the protein

into blocks after performing rigidity analysis with

FIRST.10 In this approach, a group of residues deter-

mined to be rigid according to FIRST, and not necessar-

ily contiguous in the primary sequence, are grouped into

a single block. An important motivation for this

approach is the recognition that nonlocal interactions are

important determinants of a protein’s functionally rele-

vant deformations, in addition to the local interactions

underlying secondary structure.6 Tama et al. also per-

formed blocking by taking the same block lengths pro-

duced by the secondary structure blocking but instead

randomly distributing these stretches over the protein

without regard for the actual secondary structure. When

this was done, the resulting normal modes performed

equivalently in describing the protein’s conformational

change compared to secondary structure blocking, sug-

gesting that blocking performed linearly along the

sequence is more dependent on block length rather than

the specific secondary structure.

Schuyler and Chirikjian also developed a method for

defining rigid blocks, but did not implement their parti-

tioning within the RTB framework.11 Rather than pro-

jecting an all-atom Hessian into a smaller subspace

defined by the blocks, they construct the stiffness matrix

describing the interactions among blocks after defining

the blocks. As the emphasis of their report was the

theory of their mechanical model, they did not develop a

blocking method based on any physical parameters.

Rather, their clustering approach is ad hoc, either group-

ing helices together and partitioning the rest of the pro-

tein uniformly in the original application11 or, in a later

application,12 simply assigning the blocks according to

chain or, in one example, according to obvious geometric

boundaries that conveniently coincided with boundaries

of functional domains. Nonetheless, they generate physi-

cally meaningful motions at small computational cost

with their technique.

Efforts have also been undertaken to model flexibility

of the individual blocks, which are rigid under standard

RTB. To this end, vibrational subsystem analysis (VSA)

was developed.13–15 In the application of VSA to large

systems,13 a given block was divided into subsystem and

environment, where the atoms in the environment fluc-

tuate under the influence of the atoms of the subsystem.

Significantly, VSA performed significantly better than

standard RTB, as demonstrated by the greater agreement

of VSA eigenvectors and eigenvalues with all-atom NMA

compared with RTB, but was consistently slower and was

not assessed in terms of its ability to reproduce experi-

mentally determined flexibility.

The application of domain decomposition techniques

is of value beyond normal mode analysis. Many previ-

ously reported domain identification schemes perform

flexibility analysis on multiple experimentally determined

structures of a given protein or on fluctuation models

calculated from NMA or molecular dynamics (MD). Sev-

eral techniques rely on clustering of regions of the pro-

tein based on similarity of RTB rotational vectors16,17 or

similarity of rotational and translation vectors combined

with prior deformation analysis.18 Other methods rely

on clustering of motional covariance from NMA or

MD19–22 or examination of the directions of motion

from a single GNM-NMA eigenvector.23 Still others rely

on fragmentation and similarity in Ca distances among

multiple known structures.24–26

A few newer methods are able to decompose a protein

into domains based on a single structure. Keating et al.27

developed a method known as StoneHinge that decom-

poses a protein based on an extension of the aforemen-

tioned rigidity analysis program FIRST. In contrast to

these techniques, which are based on kinematic metrics,

FlexOracle partitions the protein according to an ener-

getic analysis of cleaved fragments, where cleavage that is

energetically favorable is hypothesized to correspond to

hinge regions, while cleavage of a putative domain would

result in a comparatively less favorable energy.

In the current work, we develop a method for protein

decomposition based on a single structure that requires

no prior computation of motion from NMA or MD tra-

jectories for implementation in RTB NMA. The method

is computationally efficient, is able to group residues that

Density-Cluster NMA
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are not contiguous in primary sequence, and is based on

as few parameters as possible, while at the same time

yielding accurate low-frequency normal modes. Further-

more, the computational methods underlying our desired

approach are not geared toward a specific type of inter-

domain motion, such as rotation about a hinge, but

should rather be able to identify a range of motions,

such as shear, flexible-loop. Moreover, the method is

valid across scales from single chain to complex, multi-

chain assemblies.

We define ‘‘Density-Cluster RTB’’ by grouping residues

according to similarities in their atomic density differences.

This approach is based on the hypothesis that similarity in

an atomic density ‘‘gradient’’ among a set of residues

would reflect a similar propensity for motion and similar

deformability. We apply a hierarchical clustering of atomic

density differences calculated between atoms within a pre-

specified cut-off radius, which are rapidly calculated with

the Fast Atomic Density Evaluator (FADE).28

We implemented this blocking scheme in the open-

source program DIAGRTB,5,6,29,30 based on an aniso-

tropic model and all-heavy atom NMA. Thus, full local

contact information was used to derive standard RTB

results for comparison, in line with the density-based ra-

tionale of our method. Normal modes were calculated

across a benchmark taken from the Database of Macro-

molecular Movements.31 These are proteins that undergo

significant conformational change in performing their

functions, representing motions at different length scales

(sub-domain, domain, and inter-domain) and of differ-

ent types (hinge, shear, refolding of structure, allosteric,

etc.). We also included a set allosteric proteins obtained

from published benchmark data sets32,33 along with sev-

eral very large, well-studied complexes for which large-

scale motion is critical for their function, namely,

GroEL-GroES, F1-ATPase, and the 70S ribosome. We

compared Density-Cluster RTB with standard 1 residue/

block, or 2–4 residues per block in terms of their ability

to capture functional motions with low-order modes as

well as speed of calculation. We did not compare with

MM-based NMA or ANM without blocking, as 1 resi-

due/block RTB has already been extensively validated

against these methods.5,6,34

Low-frequency normal modes calculated with the Den-

sity-Cluster RTB (DCRTB) are in good agreement with

low-frequency modes calculated with 1 residue/block

RTB. Moreover, we show that DCRTB modes are in good

agreement with the direction of motion associated with

the conformational change, and even show better correla-

tion with B-factors than 1–4 residue/block partitioning

for a number of examples. Finally, the method is compu-

tationally cheap, with dramatic reductions in computer

time demonstrated for the systems at all scales, but espe-

cially for the largest. For example, calculation of the all-

atom DCRTB normal modes for the 70S ribosome took

about 30 min on a desktop computer (an iMac contain-

ing a 3.06 GHz Intel Core 2 Duo CPU with 4 GB of

memory), compared with over 35 h for 4 residue/block

RTB on the same iMac.

MATERIALS AND METHODS

Domain decomposition

The atomic density of the protein is calculated using

the Fast Atomic Density Evaluator (FADE). This algo-

rithm rests on the power law relationship between atomic

density N and distance r from a reference point x:28

Nðx; rÞ ¼ rki ð2Þ

FADE uses a fast Fourier transform (FFT) algorithm to

calculate the density exponent k at grid points. A density

value for each residue is assigned by estimating the value

of k at each grid point near an atom and then averaging

over local k values. A matrix M of density differences is

calculated as follows:

Mij ¼ �ki � �kj if dij � 20

Mij ¼ 0 if dij > 20
ð3Þ

where dij is the inter-residue distance taken to be the short-

est distance between any atom of residue i and any atom of

residue j. Density differences are calculated only if the inter-

residue distance falls within a cut-off of 20 Å. (For aspartate

transcarbamoylase, GroEL, GroEL-GroES, and the ribo-

some a 40-Å cut-off was used due to the larger size of these

systems.) This ensures that the matrix M reflects only local

correlations, as density similarities between distant protein

regions are unlikely to be physically meaningful.

Using the Pearson correlation between the calculated

density differences as distance metric, residues can be

clustered into groups in which there is high correlation

in the density profile. Clustering was done using maximal

linkage, the most stringent criterion for successive cluster

merging. We also performed hierarchical clustering with

average linkage, but we found that complete linkage per-

formed better for Density-Cluster RTB, in particular the

ability of the modes to capture the experimentally meas-

ured conformational change. Complete linkage also

decomposed the protein into fewer blocks than average

linkage, thus giving added efficiency.

Following hierarchical clustering, one has a tree struc-

ture that represents a hierarchy of data similarity. In hier-

archical clustering, elements are successively merged into

clusters based on the distance criteria, here following the

regime of complete linkage defined according to the

maximum distance within a cluster. A merging of groups

occurs at a node. Here, the lowest nodes correspond to

the residues and the highest node corresponds to the

entire protein. Branches represent distances between suc-

cessive merging of nodes. The length of a branch is deter-
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mined by the change in maximum intracluster distance

when one cluster is split into two, hence long branches

occur when splitting a cluster results in two clusters with

significantly smaller diameters than the original cluster.

The branches of the dendrogram are ranked by the dis-

tance between upper and lower nodes. The residues at the

termini of the highest 10% of branches are determined,

and for each of these top branches, its set of terminal

branches, representing individual residues, are combined

into a single rigid block. Due to the hierarchical aspect of

the clustering, some tall branches may be daughters of

other tall branches, leading to a situation where some ini-

tially determined clusters may be a subset of a larger clus-

ter. In this case, the lower branch defines its own rigid

block, with the remaining elements of the larger cluster

defining a separate rigid block.

Anisotropic network model

Interactions between all heavy atoms are calculated

using a harmonic potential evaluated for atoms within a

cut-off distance as

U ¼
X
i<j

C0 rij � r0ij

� �2

�h rc � r0ij

� �
ð4Þ

where rij and rij
0 are the instantaneous and equilibrium

distances between atoms i and j, respectively, rc is the

cut-off distance (6 Å) for inter-atomic interactions, C0 is

an arbitrary force constant set to 1, and h enforces the

cut-off, so that

hðrc � r0ijÞ ¼ 1 if rij � rc

hðrc � r0ijÞ ¼ 0 if rij > rc
ð5Þ

Rotational–translational blocking

In RTB, the original Hessian is projected into a sub-

space of rotational–translational eigenvectors of the rigid

blocks. The original 3N X 3N Hessian H (where N is the

number of atoms) is reduced to a 6n X 6n Hessian Hproj

(where n is the number of blocks), described as

Hproj ¼ PTHP ð6Þ

where P is an orthonormal 3N X 6n matrix of transla-

tional/rotational eigenvectors of each rigid block:5,6,9

P
l
J ;jm

¼
ffiffiffiffiffiffi
mj

Mj

r
dlm l ¼ 1; 2; 3

P
l
J ;jm

¼
X
a;b

IJð Þ�1=2
l�3ð Þ;a

ffiffiffiffiffiffi
mj

p
rj � r0J
� �

b
eabm l ¼ 4; 5; 6

ð7Þ

J and j subscripts label blocks and atoms, respectively.

l 5 1,2,3 and l 5 4,5,6 label translation and rotation,

respectively. mj and rj are the mass and Cartesian coordi-

nates of atom j, respectively. MJ, IJ, and rj
0 are the total

mass, moment of inertia and center of mass of block J. d
is the Kronecker delta, and e is the permutation over a,
b, and m 5[1,2,3].

The resulting projected Hessian Hproj is diagonalized

to give eigenvectors in the subspace defined by the rigid

blocks, Uproj. Eigenvectors in the original space can be

obtained by multiplying Uproj by the projection matrix:

U ¼ PUproj ð8Þ

where P is the projection matrix defined above. These

calculations were carried out using a modified version of

DIAGRTB.5,6,29,30

Normal mode evaluation metrics

Density-Cluster RTB normal modes and 1 residue/

block normal modes (2–4 residues per block for aspartate

transcarbamoylase and GroEL-GroES) were compared

using the following measures, which assess agreement

between blocking methods and with experimentally

observed conformational change.

Overlap. The overlap Oij of a given normal mode Ui of

one method with a mode Uj of another method is given

by

Oij ¼ abs UT
i � Uj

� � ð9Þ

This is simply the absolute value of the inner product

of the normal modes. Repeating the calculation for all

mode combinations results in a matrix of overlap values.

Spanning coefficient. The spanning coefficient, S, meas-

ures how well a normal mode from one method is repre-

sented by the space of normal modes calculated using

another method. Here, we wish to know how well each

normal mode of the 1 residue/block RTB NMA is

approximated by the space of normal modes calculated

by Density-Cluster RTB. For the kth 1 residue/block

mode, the spanning coefficient Sk is calculated as follows:

Sk ¼
X
i

UT
i;clust � Uk;1res

� �2

ð10Þ

where Ui;clust is the ith normal mode calculated with

Density-Cluster RTB and Uk;1res is the kth normal mode

calculated with 1 residue/block NMA.

Root mean-squared fluctuation. Root mean-squared

fluctuation (RMSF) is a standard measure for calculating

atomic flexibility from normal modes given by

RMSFj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

U 2
ij

ki

vuut ð11Þ

Density-Cluster NMA
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where RMSFj is the root mean-squared fluctuation of the

jth degree of freedom (x/y/z component of motion), Uij

is the jth component of the ith eigenvector, and kI is the
eigenvalue associated with the ith eigenvector.

Cumulative involvement coefficient. The cumulative

involvement coefficient (CI) measures how well a set of

normal modes Uk capture an observed protein motion:

CI ¼
X
k

DR
DRk k � Uk

� �2

ð12Þ

DR is the conformational change represented as a dif-

ference between the Cartesian coordinates of the protein

in the two states. The argument inside the parentheses is

the inner product between the kth normal mode and the

normalized conformational change vector.

Correlation between RMSFs and B-factors. The correla-

tion between B-factors and RMSFs calculated by normal

modes was computed as follows:

C ¼
X
i

RMSFi �
ffiffiffiffiffi
Bi

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j

MSFj
r

�
ffiffiffiffiffiffiffiffiffiffiP
j

Bj

r ð13Þ

where RMSFi is the root mean-squared fluctuation of the

ith atom and Bi its B-factor.

RESULTS AND DISCUSSION

Description of dataset and domain
decomposition

Density-Cluster RTB and 1 residue/block RTB were

assessed using examples from the Database of Macromo-

lecular Movements.31 This is a well-annotated database

of functionally relevant large-scale motions categorized

according to the size of the mobile regions and the type

of motion. The size categories include fragments, entire

domains, and subunits/assemblies larger than a domain.

Types of motions include hinge and shear motions, par-

tial refolding of tertiary structure, and more complex

motions that may be allosteric. The proteins studied here

are a representative sampling of all the different scales

and motion types in the database (Supporting Informa-

tion Table S1). In addition to testing whether Density-

Cluster RTB is capable of modeling different motion

types, we assessed its performance for several large allo-

steric systems and molecular machines, for which more

detailed calculations are prohibitively expensive (Sup-

porting Information Table S1).

Our strategy rests on the hypothesis that regions of

similar atomic density gradients within a local spatial

neighborhood will undergo similar motions. First, the

protein’s atomic density is calculated using the fast Fou-

rier transform-based Fast Atomic Density Evaluator or

FADE.28 Average atomic densities are assigned to each

residue according to densities of the nearest grid points.

Differences in average densities for residues within a 20Å

cut-off were calculated, or, for larger systems such as the

70S ribosome, GroEL-GroES, and aspartate transcarba-

moylase, a 40 Å cut-off was used to further coarsen the

resolution. We also tried a cut-off of 10 Å on the smaller

systems, which resulted in similar quality normal modes

to those obtained using the 20 Å cut-off. However, since

this resulted in a larger number of rigid blocks, it was

not as efficient.

Each matrix of atomic density differences was sub-

jected to hierarchical clustering, using the Pearson corre-

lation between rows as the similarity measure. The result-

ing tree structure was used to obtain the clusters. Each

branch was ranked by the distance between its associated

upper and lower nodes, and the 10% of branches with

the longest inter-nodal distances (or 5% in the case of

especially large systems like the ribosome) are taken to

represent the clusters of residues used for the blocking.

The significance of long branches is that the addition of

the lower node to the cluster considerably increases the

largest distance/dissimilarity among elements of the clus-

ter. Supporting Information Table S2 gives the results of

the cluster decomposition along with the number of resi-

dues for each protein studied. In most cases, the number

of blocks is a 12–15% fraction of the number of residues.

For the NMA calculations, the number of residues and

the number of blocks represent the number of rigid

bodies for 1 residue/block RTB and cluster RTB, respec-

tively.

Finally, we examined the spatial distribution of the

blocks when mapped onto the protein structure to deter-

mine whether the blocks coincided with known func-

tional domains and were sensible from a physical stand-

point. We also compared our decomposition with that of

rigidity analysis as calculated using FIRST,10 which dem-

onstrated success when applied to proteins for use with

RTB.9 For the examples that are discussed below, FIRST

tends to form a small number of large blocks and a large

number of very small blocks, which divide the protein

into constrained regions connected by flexible ones.

Whole secondary structure components are often

assigned to single blocks using FIRST. In contrast, our

method tends to divide the protein into a smaller num-

ber of rigid blocks, as seen in Supporting Information

Table S3.

Although the partitions generated by Density Cluster

and FIRST are not the same, there are clear similarities.

Figure 1 and Supporting Information Figure S1 show ad-

enylate kinase and several other proteins colored accord-

ing to the identity of the blocks generated using the Den-

sity Cluster approach. Supporting Information Figure S2

shows the decomposition of these same proteins using

FIRST. Adenylate kinase is a monomeric enzyme that cat-

alyzes the transfer of a phosphoryl group from ATP to

O.N.A. Demerdash and J.C. Mitchell
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AMP35,36 and has been well-studied by NMA.6,37,38

ATP and AMP are each bound by a domain, the Lid and

NMPbind domains, respectively. These domains are re-

sponsible for the conformational change, ‘‘closing down’’

on their respective bound molecules prior to catalysis.

Each of these domains appears to be composed of one

main block, colored light green for the Lid and

NMPbind in dark blue (Fig. 1). In Supporting Informa-

tion Figure S2A, we see that secondary structure elements

tend to be grouped together using FIRST, and that there

are a few large blocks (in color) surrounded by many

smaller blocks. As with the Density-Cluster decomposi-

tion, the Lid and NMPbind domains appear to each be

composed of a dominant block colored chartreuse and

turquoise, corresponding roughly to the light green block

of the Lid and the dark blue block of the NMPbind.

Myosin II is one of the main proteins involved in mus-

cle contraction. Under the control of ATP binding and

hydrolysis, the motor domain of myosin II undergoes

successive cycles of ratcheting motions relative to the

long lever arm, along with binding and unbinding of the

motor domain and actin.39–42 The ratcheting motion

involves a large conformational change of the converter

domain,43,44 the link between the motor domain and

the lever arm (note that this domain is absent in the

crystal structure depicted in Supporting Information Fig.

S1B.) The converter is comprised primarily of a single

green block, suggesting that the important conforma-

tional changes are not internal but rather are relative to

other structural elements. Near the converter domain, the

relay helix is another structure that undergoes substantial

conformational change and plays an important role in

coupling the active site conformation to that of the con-

verter/lever arm.45 It appears divided into four regions

that are qualitatively consistent with its functional role.

As seen in Supporting Information Figure S1B, the

region proximal to the converter is part of a shared rigid

block. Adjacent to this block, but oriented away from the

converter, are blocks in light and dark blue, as well as a

more distant large orange block. Although difficult to see

in the displayed view, the relay helix ends in a section

comprising a red and a green block. The red block is

shared by part of Switch II, an important functional

motif whose conformation determines myosin’s ability to

bind ATP. Finally, a large portion of the upper 50 K do-

main is assigned to a single navy blue block, consistent

with the fact that this domain exhibits significant mobil-

ity with respect the regions adjacent to it. The FIRST

decomposition also shows a dominant block comprising

a large portion of the upper 50 K domain (the green

block in Supporting Information Fig. S2B). However,

FIRST assigns the bulk of the protein to a single very

large block (dark blue in Supporting Information Fig.

S2B), which contrasts the Density-Cluster decomposition.

Human immunodeficiency virus type 1 (HIV-1)

reverse transcriptase catalyzes the synthesis of DNA from

RNA,46–49 making it an important drug target. It is a

heterodimer, with one chain (p51) comprising a DNA

polymerase domain consisting of fingers, palm, and

thumb motifs, and the other (p66) composed of a RNa-

seH domain and an additional DNA polymerase domain.

DNA is bound in a cleft formed by the subdomains of

p66, which exhibit a great degree of flexibility50–52 con-

sistent with their role in regulating DNA binding. In

Supporting Information Figure S1C, one can see that the

fingers and thumbs of p66 are, respectively, comprised of

1 (in green) or 2 (in yellow and blue) main blocks. A

previously reported method18 yielded a similar domain

decomposition for these two subunits. Supporting Infor-

mation Figure S2C shows that FIRST also divides these

functionally relevant domains into several blocks, where

the fingers are composed of a dominant block (olive

green) and the thumb is composed of a sky blue and a

brick red block.

GroEL-GroES is a large, multimeric, protein-folding

chaperone that sequesters proteins in its barrel-shaped

structure and catalyzes their correct folding through cou-

pling to ATP hydrolysis.53–59 The barrel structure of

GroEL consists of two rings, each composed of seven

chains. These chains are each composed of three

domains: an equatorial domain adjacent to the interface

between the rings, an intermediate domain, and an apical

domain. These domains exhibit an interesting switching

Figure 1
Adenylate kinase (PDB ID: 4ake) with blocks mapped onto the

structure by color code. Residues in a given region colored the same

way belong to the same block. There is no physical significance of the

colors themselves; they are only labels.

Density-Cluster NMA
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behavior associated with ATP binding to the equatorial

domain. When ATP is bound, the motions of the equato-

rial and intermediate domains become coupled. In the

ATP-unbound state, the motion of the apical and inter-

mediate domains are coupled.60 We see in Supporting

Information Figure S1D that a large portion of the equa-

torial domain is composed of two blocks (in green and

red), and that the ‘‘core’’ of the apical domain is com-

posed of a single large block (in sky blue). In contrast,

the intermediate domain is a mosaic of blocks, including

shared blocks with the other two domains, consistent

with its role as a conformational coupling switch. The

FIRST decomposition of GroEL-GroES represented in

Supporting Information Figure S2D shows a decomposi-

tion that has little obvious similarity with Density-Clus-

ter, which is in contrast with the previous examples.

Upon examining the structures in Figure 1 and Sup-

porting Information Figure S1, it appears that some heli-

ces are transected longitudinally by the blocking. This

was initially disconcerting, as helices are known to be sta-

ble structures. However, we observed similar divisions in

the deformation energy-based decomposition method of

Hinsen and co-workers.18 Indeed, deformability, and

even local unfolding, are hypothesized to be an impor-

tant in determining a protein’s function.61–66 Moreover,

if the helical axis acts as a hinge, this type of decomposi-

tion is sensible.

Comparison of density-cluster RTB with 1
residue/block RTB

We compared the normal modes calculated with the

Density-Cluster RTB method with 1 residue/block RTB

and with N residue/block RTB, where N is the ratio of

the number of residues to the number of Density Cluster

blocks, which varies depending on the example. In the

case of N residue/block RTB, N residues that are contigu-

ous along the protein’s primary sequence are grouped to-

gether into a single block. This was performed as a con-

trol to determine whether the same reduction in degrees

of freedom would achieve similar achieve the same accu-

racy as Density-Cluster RTB.

We also compared Density-Cluster RTB with RTB

using FIRST’s domain decomposition, henceforth

referred to as Rigidity-Cluster RTB. We attempted to

compare the methods across a range of systems, consist-

ing of examples in our data set that performed well in

the previous study by Ahmed and Gohlke9 as well as the

examples that were discussed in the previous section.

Unfortunately, FIRST decomposed the protein into

blocks that were too large to be dealt with by the

DIAGRTB code. However, we did examine the results of

FIRST for lysine, arginine, ornithine-binding protein

(2lao) and thymidylate synthase, as well as HIV-1 reverse

transcriptase.

In all cases, normal modes were based on the aniso-

tropic model applied to heavy atoms, and eigenvalue cal-

culations were performed using a modified version of

DIAGRTB.5,6,29,30 For some larger systems, 1 residue/

block NMA could not be performed due to the size of

the resulting Hessian, so comparisons are based on

blocks of 2-3 consecutive residues.

The agreement between modes generated by different

methods was assessed by means of the overlap measure,

which is simply the inner product of the mode vectors.

There is high overlap for the 2–3 lowest frequency non-

trivial normal modes in almost all cases, and this was

true across all types of motion classes and length scales

[Fig. 2(A) and Supporting Information Fig. S3]. Larger

proteins, whose motions tend to be more collective, often

had good agreement for up to 20–30 low order modes.

Rigidity-Cluster RTB also yielded high overlap in these

lowest frequency modes.

The spanning coefficient is another measure that was

used to evaluate the agreement between normal modes

calculated with the two blocking schemes. The spanning

coefficient is a measure of how well each normal mode

calculated with the reference 1-residue/block method is

approximated using the space of normal modes calcu-

lated with Density-Cluster RTB. The spanning coefficient

calculation yields a similar result as the overlap measure

[Fig. 2(B) and Supporting Information Fig. S4], which is

intuitive, as the spanning coefficient is essentially a cu-

mulative overlap (see Methods). The 1-residue block nor-

mal modes are well spanned (spanning coefficient of 0.5

or greater) by Density-Cluster RTB for the first 50–60

modes for smaller proteins and 100 or more modes for

larger systems. The span is similar over the lowest order

modes to that obtained with the control case of N resi-

due/block modes. However, the span decays rapidly for a

number of examples in the case of N residue/block

modes compared with Density-Cluster modes [Fig. 2(B)

and Supporting Information Fig. S4]. In those cases,

higher frequency 1 residue/block modes are better

spanned by Density-Cluster modes.

The ability of the methods to describe protein flexibil-

ity was also measured using root mean-squared fluctua-

tion (RMSF). The methods perform equivalently in mod-

eling the flexibility as assessed by this measure [Fig. 2(C)

and Supporting Information Fig. S5]. The methods dif-

fered somewhat in the calculated magnitude of the

RMSFs, with Density-Cluster RTB, N residue/block RTB,

and Rigidity-Cluster RTB yielding smaller magnitude

RMSFs than 1 residue/block RTB. This is expected given

that Density-Cluster RTB, Rigidity-Cluster RTB, and N

residue/block RTB impose greater rigidity than 1-residue/

block RTB. For the low frequency modes used to calcu-

late RMSF, we verified that in all cases, correlation of the

eigenvalues of Rigidity-Cluster RTB and N residue/block

RTB with 1 residue/block RTB was 97–99% for the first

200 lowest eigenvalues (Data not shown.).
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Agreement with experimentally determined
conformational changes and B-factors

In addition to comparing Density-Cluster RTB against

other methods, its ability to describe known conforma-

tional changes was also assessed. In particular, normal

modes were calculated using the unbound/inactive state,

and their ability to describe the conformational transition

from the unbound/inactive to the bound/active state was

assessed using the cumulative involvement coefficient,

which is defined similarly to the spanning coefficient.

However, in this case, we measure how well the vector of

positional differences between two experimentally deter-

mined structures is spanned by the normal modes calcu-

lated with either the reference 1 residue/block or Den-

sity-Cluster RTB methods. It can be seen [Fig. 2(D) and

Supporting Information Fig. S6] that small protein

motions are not as well described by Density-Cluster

RTB as by 1 residue/block RTB, although the conforma-

tional changes of four proteins less than 300 residues

were well described with Density-Cluster RTB: ran

GTPase (PDB ID: 1byu), CheY (3chy), LAO-binding pro-

tein (2lao), and adenylate kinase (4ake). With the excep-

tion of CheY, these four proteins represent hinge

motions, which are probably the simplest type of motion

represented by our dataset. However, larger motions are

well described by the method, and, in a few cases (ran

Figure 2
Performance of Density-Cluster RTB modes compared with standard 1 residue/block modes for GroEL-GroES (PDB ID: 2c7c). Other examples in

our dataset performed similarly and are given in Supporting Information. (A) Overlap matrix describing agreement of low-frequency Density-

Cluster RTB modes (bottom axis) with 1 residue/block modes (left axis). The color scale is a heat map that runs from blue (overlap of zero) to

maroon red (overlap of 1). (B) Spanning coefficient describing how well each 1 residue/block mode is represented by the entire space of density-

cluster modes (blue) and N residue/block modes (red). The mode index starts with 1, although mode 7 is the first nontrivial mode. (C) Root
mean-squared fluctuations calculated with Density-Cluster RTB (blue), 1 residue/block RTB (green), and N residue/block RTB (red). (D)

Cumulative Involvement Coefficient, a measure of how well the normal modes capture the experimentally known direction of conformational

change, calculated with Density-Cluster RTB (blue), 1 residue/block RTB (green), and N residue/block RTB (red) plotted versus mode index. The

mode index starts with 1, although mode 7 is the first nontrivial mode.
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GTPase [1byu]; glycogen phosphorylase [1gpb]; Bam H1

restriction endonuclease [1bam]; PcrA DNA helicase

[1pjr]; aspartate transcarbamoylase [1rac]), Density-Clus-

ter RTB has higher cumulative involvement than 1 resi-

due/block RTB. With the exception of ran GTPase, these

proteins represent complex motions that are not simply

hinge or shear. Since NMA is primarily used to describe

complex, large-scale motions on time scales inaccessible

by MD, good performance for such large cases is most

desirable. We note that the control calculation of N resi-

due/block RTB yields cumulative involvement that is

largely in agreement with 1 residue/block RTB and Den-

sity-Cluster RTB. We also focused on the cumulative

involvement in the lowest frequency nontrivial modes to

determine whether functional significance is more con-

centrated in this range. We note that 14 examples have

higher cumulative involvement at mode 20, and 8 of

these (CheY, GroEL (1gr5), hemoglobin, aspartate trans-

carbamoylase, F1-ATPase, rhoA, glutamate dehydrogen-

ase, and phosphofructokinase) are allosteric proteins,

which, in general, undergo a more complicated confor-

mational change than proteins that bind a single sub-

strate (Supporting Information Table S4). For the three

examples that we were able to perform using Rigid-Clus-

ter RTB, two of these, lysine, arginine, ornithine-binding

protein (2lao), and thymidylate synthase (3tms), both

showed significantly higher cumulative involvement with

Density-Cluster than Rigidity-Cluster RTB in the low-fre-

quency range. Furthermore, cumulative involvement cal-

culated with Density Cluster NMA are in much better

agreement with 1 residue/block RTB (Supporting Infor-

mation Fig. S6E). In addition, the method has an impor-

tant advantage over 1 residue/block RTB, namely compu-

tational efficiency, which will be discussed in the next

section.

In addition to the experimentally determined direction

of conformational change, we also compared Density-

Cluster RTB with 1 residue/block RTB and N residue/

block RTB in their ability to describe experimentally

determined magnitudes of fluctuation, the B-factors. We

see that in 20 of the 32 cases the correlation between cal-

culated RMSF and B-factors in Density-Cluster RTB is

higher than that obtained with 1-residue/block RTB. Sig-

nificantly, these 20 proteins encompass the entire range

of length scale and type of conformational change (Table

I). For the three proteins for which we were able to per-

form Rigidity Cluster RTB, Density-Cluster RTB achieved

a higher correlation with B-factors. The poorer perform-

ance of 1 residue/block RTB is likely related to ANM’s

tendency to exaggerate the motions of floppy or loosely

packed regions, the so-called tip effect. Indeed, introduc-

ing additional appropriate stiffness into the system, as we

have done with our method, has been shown to amelio-

rate the tip effect and improve agreement with experi-

mentally determined magnitudes of motion.67–69 That

Density-Cluster RTB results in greater rigidity is also

demonstrated by the smaller magnitude RMSFs com-

pared with 1 residue/block RTB [Fig. 2(C) and Support-

ing Information Fig. S5].

Computational cost

Because Density-Cluster RTB and other coarse-grained

methods are aimed at the largest systems with a view to-

ward reduced computational expense, we compared the

calculation time of 1 residue/block RTB with Density-

Cluster RTB for the largest systems in our study, along

with some smaller allosteric systems, to determine

whether computational savings occur on all length scales.

Of these, the 70S ribosome, GroEL, GroEL-GroES, F1-

ATPase, aspartate transcarbamoylase, and glutamate dehy-

drogenase are large multimeric protein assemblies with

between 2000 and 8000 residues (Table II). For these mas-

sive systems, 1 residue/block RTB could not be performed,

as the resulting Hessian was too large. Hence, Density-

Cluster RTB was compared with 2–4 residues/block for

these examples. Table II shows dramatic computational

savings across all length scales, but particularly for the

largest examples. Compute times are at least 83% shorter

for Density-Cluster RTB compared with 1–4 residue/block

RTB. Especially striking was the computational saving for

the 70S ribosome, where Density-Cluster RTB resulted in

a nearly 2-fold order of magnitude reduction in the com-

puting time (Table II). For most cases, the setup and cal-

culation of the density clusters was instantaneous, except

for GroEL and GroEL-GroES, which each took around 10

min. Overall, we observed faster calculations for Density-

Cluster RTB compared with Rigidity Cluster RTB, with

especially significant reduction in the computational cost

for HIV-1 reverse transcriptase (Table III).

Examination of low-frequency modes

In addition to validating Density-Cluster RTB by com-

parison with the established single-residue blocking and

numerical comparison with experimental conformational

change, we also examined the animations of Density-

Cluster RTB normal modes to ensure that they yield

physically reasonable kinematics and are in agreement

with previously published NMA calculations. In general,

the low-frequency modes that we examined are in good

agreement with previous calculations and with experi-

mentally inferred motions. Depicted in Figure 3 and Sup-

porting Information Figure S6 are four well-studied pro-

teins that are each perturbed along the first nontrivial

mode, mode 7.

Myosin II is the molecular motor that causes muscle

contraction by cycles of binding and unbinding to actin

filaments that are coupled to ATP binding. It consists of

a motor domain that contains the structural motifs re-

sponsible for actin and ATP binding and a lever arm.

Consistent with its role in linking the motor domain to
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Table I
Correlation of Density-Cluster RTB, 1–4 Residue/Block RTB, N-Residue/Block RTB, and Rigid Cluster RTB with B-Factors

Proteins from database of macromolecular movements

PDB ID Protein name Cluster 1 res./block N res./block Rigid clust.

3tms Thymidylate synthase 0.90 0.86 0.94 0.70
4dfr Dihydrofolate reductase 0.94 0.88 0.98
1byu GDP-bound Ran 0.75 0.76 0.95
3chy CheY (inactive state) 0.92 0.94 0.98
1j74 Ubiquitin-conjugating enzyme Mms2 0.80 0.89 0.98
1i69 OxyR transcription factor 0.94 0.92 0.98
6tim Triosephosphate isomerase 0.92 0.91 0.94
2lao Lysine, arginine, ornithine-binding protein 0.97 0.96 0.98 0.88
1g7s Translation-initiation factor IF2/EIF5B 0.93 0.93 0.93
1d6m DNA topoisomerase III 0.97 0.93 0.96
2hmi HIV-1 reverse transcriptase 0.92 0.88 0.91 0.89
4ake adenylate kinase 0.96 0.94 0.95
8adh APO-liver alcohol dehydrogenase 0.96 0.90 0.97
9aat Aspartate amino transferase 0.95 0.95 0.95
1lih Aspartate receptor 0.88 0.84 0.90
1su4 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 0.91 0.92 0.93
1pjr PcrA DNA helicase 0.94 0.94 0.96
1bam Endonuclease BamH I 0.97 0.97 0.98
4hhb Hemoglobin 0.97 0.96 0.97

Allosteric proteins, multimeric assemblies, and large molecular machines

PDB ID Protein name Cluster 1 res./block N res./block

1rac aspartate transcarbamoylase 0.93 0.92 0.93
1an0 cdc-42 0.88 0.84 0.91
1dbq purR repressor 0.87 0.86 0.88
1EYJ fructose-1,6-bisphosphatase 0.95 0.92 0.96
1ftn RhoA 0.95 0.88 0.97
1gpb glycogen phosphorylase 0.83 0.80 0.90
1nr7 glutamate dehydrogenase 0.78 0.76 0.78
1tlf lac repressor 0.85 0.85 0.85
1v4t Glucokinase 0.95 0.68 0.77
1vom myosin II 0.91 0.83 0.87
6pfk Phosphofructokinase 0.96 0.96 0.97
1bmf F1-atpase 0.93 0.89 0.92

Table II
Computational Timings for Allosteric Proteins and Large Molecular Machines

Protein name No. of res. No. of atoms Cluster 1 res./block N res./block
Fractional reduction in

computation time for cluster RTB

ATCase** 2778 21,666 0:09:24 4:06:56 0:06:53 0.036
GroEL T/T*** 7238 52,668 1:32:49 22:32:29 1:15:39 0.069
GroEL R/T*** 7350 53,970 1:40:04 24:00:41 1:14:57 0.07
GroEL R0/T-GroES**** 7966 57,946 1:57:40 12:52:56 2:43:17 0.153
GroEL(R@/T)-GroES**** 7923 58,674 1:59:53 13:06:49 1:46:44 0.152
cdc-42 189 1477 0:00:08 0:00:48 0:00:04 0.167
purR repressor 552 4344 0:00:45 0:15:59 0:00:25 0.0469
FBPase 1308 9984 0:06:56 3:53:37 0:02:54 0.03
RhoA 117 1405 0:00:06 0:00:42 0:00:04 0.143
glyc. phosphorylase 1646 13,382 0:06:53 7:33:11 0:03:06 0.015
glut. dehydrogenase** 2976 23,244 0:24:05 5:07:45 0:12:01 0.078
lac repressor 1184 10,700 0:03:40 2:34:33 0:01:52 0.024
Glucokinase 424 3325 0:00:26 0:07:26 0:00:17 0.058
myosin II 730 5750 0:01:15 0:37:30 0:00:38 0.034
phosphofructokinase 1276 9395 0:03:24 3:17:53 0:01:40 0.017
F1-atpase** 2987 22,722 0:17:35 5:59:13 0:08:02 0.047
70S Ribosome**** 9788 13,816 0:32:41 35:32:49 0:24:10 0.015

Two residues/block RTB (**) was done due to insufficient memory. Three residues/block RTB (***) and four residues/block RTB (****) were done for the same reason

for the indicated systems.
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the lever arm, the converter exhibits large motions in the

lowest frequency mode [Fig. 3(A) and Supporting Infor-

mation Fig. S7A]; this is also in agreement with X-ray

crystal structures of myosin II in different states of ATP

hydrolysis43,44 and a previous NMA study.34 The

depicted normal mode also shows simultaneous flexing

of the upper 50-K domain, consistent with the prior

work of Li and Cui.34 Other low frequency modes are

similarly dominated by motions of the converter and

upper 50-K domains. Mode 8 captures significant

motions of the relay helix, a large structural element

thought to be important for coupling ATP-binding to

pivoting at the converter.

GroEL-GroES is a 21-chain multimer that functions as

a folding chaperone, sequestering misfolded or partially

folded proteins and catalyzing their folding via coupling

to ATP hydrolysis. Each chain of GroEL comprises an

equatorial domain, intermediate domain, and apical do-

main. The chains of GroEL exhibit an important alloste-

ric switching behavior linked to ATP binding.56 When

ATP is bound to the equatorial domain, the equatorial

domain and intermediate domain are correlated and

both rigid, while the apical domain remains flexible. In

the absence of ATP, the behavior of the intermediate do-

main switches to become correlated in its motion with

the apical domain, in which both are flexible in the ATP-

Table III
Computational Times for Examples for which Rigidity Analysis was Performed

Protein name No. of residues No. of atoms Cluster RTB Rigidity cluster

Thymidylate synthase 264 2150 0:00:17 0:01:06
Lysine, arginine, ornithine-binding protein 238 1822 0:00:13 0:00:30
HIV-1 reverse transcriptase 988 7630 0:03:40 0:36:00

Figure 3
Protein structures deformed by the first nontrivial Density-Cluster RTB normal mode. In all cases, the deformed structure is in red, and the static

structure is in blue or green. (A) Myosin II. The motion comprises a ratcheting of the converter domain and a simultaneous bending of the upper

50 K domain. (B) GroEL-GroES. Here a torsional motion of the two rings about the equator is seen with large amplitude motions of the apical

domains of the individual subunits of the trans-ring accompanied by much smaller amplitude motions of the same domains of the cis-ring,

illustrating the allosteric switching induced by nucleotide binding to the cis-ring.
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unbound state. This switching behavior is observed in

the first nontrivial mode of GroEL-GroES [Fig. 3(B) and

Supporting Information Fig. S7B], where we observe that

the apical and intermediate domain motions are large

and correlated in the ATP-unbound trans-ring, while the

equatorial and intermediate domains are much more

rigid in the ATP-bound cis-ring. In modes 7–9, we also

observe a twisting of the two rings in opposite directions

with respect to each other, consistent with a key prior

NMA study.60

F0F1-ATP synthase is the complex that links transmem-

brane proton pumping to ATP synthesis.43,70–72 F1-

ATPase is the soluble portion of this complex and con-

sists of a g subunit whose motion is coupled to confor-

mational change in the nucleotide-binding subunits. In

particular, the large-amplitude motion of the g subunit

was found to be strongly coupled to the flexible bE subu-

nit,73 and results from our method are consistent with

this finding (Supporting Information Fig. S7C). Also in

line with this prior study is the observation that the

other b subunits remain relatively rigid, while one of the

a subunits, aTP, is highly flexible.

The 70S ribosome is a large assembly comprised of

RNA and protein chains that translate mRNA to a poly-

peptide chain, and a large conformational change occurs

during protein synthesis.74–76 Most notably, the ribo-

somal 30S and 50S subunits are observed to undergo a

ratchet-like rotation relative to each other75 that is

thought to affect the translocation of mRNA during

translation. Indeed, we observed this motion in all four

of the lowest frequency modes (Supporting Information

Fig. S7D), and this is consistent with previous NMA

studies.77,78 Also in line with these studies are observed

large-amplitude motions of the L1 stalk, which has a

postulated role in binding tRNA and removing it from

the E-site.

CONCLUSION

In this work, we have developed a new method for do-

main decomposition for RTB normal mode calculations,

which is based on hierarchical clustering of local atomic

density differences. Our method shows a clear computa-

tional advantage for large systems, yielding high-quality

modes with a 10–100-fold reduction in computational

expense when compared with 1–4 residues/block. The

method is more computationally efficient than NMA

with rigidity analysis, which was slower or could not be

performed at all due to the size of the largest blocks. The

modes calculated using this technique were shown to be

in good agreement with normal modes calculated with

standard 1–4 residues/block RTB. When comparing the

agreement of Density-Cluster NMA with 1 residue/block

or N residues/block, it is notable that our method is bet-

ter able to span the higher frequency modes than N resi-

due/block NMA and performs similarly to 1 residue/

block over a large range of modes.

Most importantly, we have demonstrated that Density

Cluster modes are able to capture experimentally

observed conformational changes for a diverse set of pro-

teins. The magnitudes of fluctuation calculated using

Density-Cluster RTB correlate better with crystallographic

B-factors in most cases than 1 residue/block RTB, and

this was especially true for larger protein systems. The

good performance on large systems is especially notewor-

thy, because the examples studied here have motions that

are highly complex, involve many length scales, and can-

not be described by simple mechanical terms as hinge-

bending or shear motions. However, for smaller systems,

the standard 1 residue/block method tended to give bet-

ter agreement with the conformational change. This is

not necessarily unexpected, as it is reasonable to postu-

late that smaller proteins must be described with more-

detailed models, as their conformational changes may

tend to involve finely tuned rearrangements of small

motifs. In contrast, larger systems, whose motions are

more collective and may involve large protein regions,

may be more suited to a domain decomposition

approach.

Domain decomposition is not a new technique, and it

has been applied toward normal mode analysis and in

other contexts. However, most existing domain decom-

position techniques require multiple structures or motion

data calculated for a single structure. FIRST is the only

systematic method that we are aware of for domain

decomposition based on a single structure.9 The Density-

Cluster RTB method developed here offers several advan-

tages. Unlike FIRST, the initial decomposition does not

require the use of any force field, thus reducing the num-

ber of parameters to which our results may be sensitive.

Moreover, compared with the domain partitioning

obtained with FIRST,9 the Density Cluster method pro-

vides a greater reduction in the number of degrees of

freedom (�85–90% reduction in number of degrees of

freedom versus 60–70% reduction in the systems studied

by Ahmed and Gohlke). In contrast to the clustering

scheme of Schuyler and Chirikjian,11,12 our method is

fully automated and does not require human interven-

tion. Finally, the use of atomic density is intuitively satis-

fying, as atomic density is closely correlated with burial

and solvent accessibility, which in turn are correlated

with flexibility. Density-Cluster decomposition thus pro-

vides a computationally efficient and accurate means of

probing a protein’s dynamic properties based on a single

structure.
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