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Quantitative analysis of protein far UV circular dichroism spectra
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A new method based on neural network theory is presented
to analyze and quantify the infoermation content of far UV
circular dichroism spectra. Using a backpropagation network
model with a single hidden layer between input and output,
it was possible to deduce five different secondary structure
fractions (helix, parallel and antiparallel 3-sheet, 3-turn and
random coil) with satisfactory correlations between calculated
and measured secondary structure data. We demonstrate that
for each wavelength interval a specific network is suitable.
The remaining discrepancy between the secondary structure
data from neural network prediction and crystallography may
be attributed to errors in the determination of protein
concentration and random noise in the CD signal, as indicated
by simulations.
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Introduction

Circular dichroism (CD) spectroscopy is a valuable tool for the
characterization of protein structures in solution (Schmid, 1989;
Johnson, 1990). This is due to the inherent information content
of the far UV CD spectra (between 180 and 250 nm) which
depends predominantly on the difference in absorption of left-
handed and right-handed circularly polarized light at the protein
backbone. Thus the CD spectrum is sensitive for the secondary
structure conformation of the protein under investigation. Aside
from these chiral centers, disulfide bridges and aromatic side-
chains (predominantly tryptophan) contribute to the CD spectrum.
Several attempts to deconvolve the spectra with respect to the
secondary structure information have been described in the past
(Brahms and Brahms, 1981; Hennessey and Johnson, 1981,
Compton and Johnson, 1986; Yang et al., 1986; Manavalan and
Johnson, 1987). Other methods are based on the assumption that
the spectra are a linear combination of reference spectra for the
five secondary structure types (helical conformation, parallel and
antiparallel 3-sheet, 8-turn and random coil).

Recently, interest in neural network methods in structural
biology has led to a number of applications focusing on secondary
structure prediction (Qian and Sejnowski, 1988; Holley and
Karplus, 1989), three-dimensional structure prediction (Bohr
et al., 1990) and prediction of ATP binding sites (Hirst and
Sternberg, 1991). The present investigation was stimulated by
attempts to apply homology modelling techniques to proteins from
extreme halophiles. Comparative structure modelling of halophilic
dihydrofolate reductase from Halobacterium volcanii may be
effectively assisted by the assignment of precise secondary
structure fractions. In this ongoing work on the fundamental
principles of protein structure prediction we were therefore faced
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with the problem of assigning most precise secondary structure
fractional indices to far UV CD spectra.

In order to develop a new method for the computation of
secondary structure proportions, CD spectra are considered as
a superposition of (i) secondary structure information, (ii) cystine
absorption, (iii) aromatic side-chain absorption, (iv) random noise
from CD measurement, and (v) non-random errors in protein
concentration measurement. Based on this assumption, methods
of assigning fractional indices for secondary structure types should
be flexible with respect to the relationship between a specific CD
spectrum and its corresponding structure, and should not
necessarily imply linear combination of reference spectra. Also,
pattern recognition algorithms require a large database which is
not yet available. Neural networks (NNs) may be trained to
tolerate noisy data, and they represent a most elegant method
of non-algorithmic deconvolution of information.

Materials and methods

The data used in this work were taken from Compton and Johnson
(1986). The authors compiled data for 15 proteins in the range
178 =260 nm, at intervals of 2 nm. Similar data were reported
by Yang et al. (1986). However, as has been pointed out and
discussed by Provencher and Glockner (1981) on thermolysin
and subtilisin BPN’, there are inherent measurement errors in
these data. We therefore used just 11 of these data sets and
excluded data sets that obviously contradict our experience in
CD spectroscopy.

For analysis of data, especially in the wavelength range between
200 and 250 nm, the data were interpolated by a cubic spline
algorithm to obtain data at intervals of 1 nm and 0.5 nm. From
the dataset cited above, we used 11 spectra (Table I): cytochrome
¢, hemoglobin, lactate dehydrogenase, lysozyme, myoglobin,
ribonuclease A, flavodoxin, glyceraldehyde-3-phosphate
dehydrogenase, subtilisin Novo and triosephosphate isomerase.
In addition, poly-glutamate (a purely «-helical polypeptide) was
used in the database. Also, hemerythrin and thermolysin data
were included in the data set; these data are taken from a
computer program distributed by Dr W.C.Johnson. Data are
given in units of 8¢, e.g. the difference in absorption coefficient
for right-handed and left-handed circularly polarized light. Before
serving the data to the network, they were normalized to a range
between —1.0 and +1.0.

There are two logical conditions that methods for secondary
structure predictions have to fulfil. The first describes that any
fractional index f for a secondary structure type k must be between
zero and unity, i.e.

0=<sfi=<l n

Also, the sum of all fractions f of secondary structure types k
must be unity if all possible secondary structures are taken into
consideration:

f, =1 03]
Backpropagation networks are feed-forward type networks that
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Table I. Fractions of secondary structure from the proteins used in this work

Protein Helix Antiparallel Parallel B-turn Random
(3-sheet 3-sheet coil
Cytochrome ¢ 0.38 0.00 0.00 0.17 0.45
Hemoglobin 0.75 0.00 0.00 0.14 0.11
Lactate dehydrogenase 0.41 0.06 0.11 0.11 0.31
Lysozyme 0.36 0.09 0.00 0.32 0.23
Myoglobin 0.78 0.00 0.00 0.12 0.10
Ribonuclease A 0.24 0.33 0.00 0.14 0.29
Flavodoxin 0.38 0.00 0.24 0.16 0.22
Glyceraldehyde-3-phosphate dehydrogenase 0.30 0.09 0.13 0.14 0.34
Subtilisin Novo 0.31 0.02 0.08 0.11 0.48
Triosephosphate isomerase 0.52 0.00 0.14 0.11 0.23
Poly-glutamate 1.00 0.00 0.00 0.00 0.00
Thermolysin 0.32 0.10 0.08 0.20 0.30
Hemerythrin 0.75 0.00 0.00 0.11 0.14

Data were taken from Compton and Johnson (1986). Some redundancies are in the dataset: the three-dimensional structures and thus the CD spectra of

hemoglobin, myoglobin and hemerythrin are similar.

Output layer

Hidden layer

Input layer

Fig. 1. Schematic topology of a NN. Data are presented to the input layer; for each data point (at each wavelength) there is a separate processing element
(‘neuron’) which processes the data and sends the result via weighted connections to each neuron in the next layer (hidden layer). The adaptation of weights is
performed in the learning phase. The output consists of five neurons that represent the five fractional states (helix, antiparailel and parallel 5-sheet, 8-turn and

random coil). The neurons in the first two layers are only partly shown.

require supervised learning. They are characterized by overlap
properties and resemble a common topology for neural network
applications. Although proposed in 1974 by P.Werbos
(Schoneburg et al., 1990), the backpropagation algorithm has
been in use only since its further development by Rumelhart and
coworkers in 1986. As described schematically in Figure I, a
simple neural network consists of processing elements in several
layers. In the topology used here, all processing elements
(‘neurons’) of a layer are connected to each neuron of the next
layer. Information and signals are transferred through these
connections and processed in the neurons. The connections are
numerically weighted; the weights are gradually changed and
adapted periodically in the ‘learning phase’ or ‘training phase’,
until each pattern presented to the input layer is correctly projected
to the corresponding pattern of the output layer. Error propagation
during learning is performed via the generalized delta-rule

Awi(t) = 0°8;0, + w Aw,(t — 1) (3)

where w is the weight between two connected elements i and
J at the learning cycle ¢, §; is the error at the processing element
[, 0; is the output of element j, ¢ is the learning constant (usually
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of the order of 0.5), and u is the momentum (0.5—1.0). At the
end of each cycle, the new weights for the next evaluations are
calculated according to

The ‘recall phase’ is then used to serve input data to the NN which
were not used during the training phase. The network calculates
the corresponding output according to the adapted weights. For
a more comprehensive treatise, cf. Rumelhart et al. (1986a,b).
Meanwhile, some modifications of the above, simple model are
used; cf Schoneburg et al. (1990). For the solution of the neural
network model, a computer program distributed by Schoneburg
et al. (1990) has been used. Validation of the results was
performed by Neural Network programs from Neural Ware Inc.
(USA).

All calculations described in this work were performed with
an industry standard personal computer (based on Intel 80386SX-
processor. 13 MHz clock) equipped with the operating system
DOS. A floating point unit and 1 MByte of memory is highly
recommended. The average calculation time of a training phase
is then between 6 and 18 h, depending on convergence, size of
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Fig. 2. (a) Dependence of the relative error in the output on the random noise which is superimposed onto the input data. This is the result of a simulation
with linear combinations of reference spectra as input data; learning was performed with SO spectra, recall was done with 250 spectra. The error describes the
average relative difference between expected and calculated output. (b) Effect of systematic ervors on the result of the NN calculation. Again, 50 simulated

spectra were in the training set and 250 spectra were used for recall.

the input dataset and topology of the network; recall usually needs
less than a second. Learning on a PC with an Intel 80486DX-
processor (33 MHz clock) still takes between 1 and 3 h.

The power of most methods published to date is measured by
the Pearson correlation coefficient r, which describes the success
of prediction of each state k determined by

_ (Expy; = N~"-Zx;-Ty)

(Cxf = N (Ex)H*(Ey; — N Ey)H)*
where all summations range fromi = 1 to N, with N being the
number of measurements. x; is the fraction of the secondary

structure element k from dataset i, whereas y; is the calculated
value for the respective secondary structure element.

®)

ry

Results

Choice of network topology

We used a series of standard topologies described in the literature:
perception, adaline and madaline, counter-propagation and back-
propagation networks (Schoneburg er al., 1990). It turned out
that only the backpropagation network was able to generalize in
the recall phase. All other topologies were able to perform pattern
recognition, e.g. spectra used in the dataset were recognized with
perfect confidence and no error in the recall; however, spectra
not included in the training phase had incorrectly assigned secon-
dary structure parameters in the recall. This allows the conclu-
sion that these topologies are incompetent to generalize the learned
rules in the recall for the problem under investigation. We thus
concentrated on back-propagation networks. A simple network
with no hidden layer also led to bad results, but with one hidden
layer the predictions were successful. A second hidden layer did
not improve the functionality, but may be important for random
noise filtering in future investigations.

The standard topology (Figure 1) finally consisted of a net with
83 processing elements in the input layer (one for each data point
in the wavelength range of 178 -260 nm), a hidden layer with
45 neurons, and an output layer with five neurons representing

the five secondary structure types under investigation. The
topology varies when different wavelength intervals or ranges
are used. It should be noted that the reliability drops significantly
when the net contains less than ~ 100 neurons. All elements in
each layer were fully connected to the neighboring layer.

Choice of transfer function

Usually, back-propagation networks use a special sigmoidal
function for the transfer of data between layers. We found that
this sigmoidal function gave slightly poorer results than a simple
linear function. Linear transfer functions, however, are usually
not appropriate for multilayer networks since two layers
connected by linear transfer may be equally represented by a
single layer with appropriate weights. In this case, however,
another learning rule must be applied. In contrast to this, results
were worse with no hidden layer used than with one hidden layer
and linear transfer. Therefore, linear transfer functions with one
hidden layer were used for the results described below.

Choice of learning rate

Once the appropriate topology for the calculations was found,
the influence of the learning rate ¢ and the momentum g on the
results and the convergence behavior of the network was
investigated. Some dependence of these parameters on the success
of the method was observed; best results were obtained by using
o = 0.1 for the first 30 000 training steps, then decreasing o
to 0.05 and finally to 0.01. The momentum () may vary between
0.1 and 0.6. The prediction was always successful when the
learning rate was below 0.3 but rarely converged when ¢ was
0.5 or higher.

The preceding protocol allows a simulated search on the energy
hyperspace (covered by the network weight parameters) using
a decreasing resolution of the search parameter, to find the global
minimum on the energy hyperspace. Note that the network
calculations did not converge when the learning rate was chosen
above 0.3. Convergence was defined as a total of 0.00001 when
reproducing the training set, or at least 300 000 cycles of learning
when no further reduction in the total error was noticed.
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Simulation of linear combination of reference spectra

To assess the quality of the method and to get information about
possible problems, datasets of simulated spectra were created.
These sets consisted of random linear combination of reference
spectra for the five different secondary structure types; data for
the reference spectra were taken from Compton and Johnson
(1986). Six to eight spectra in the training set were sufficient
to deconvolve the simulation spectra into the respective reference
spectra with perfect agreement in the recall phase; the average
error in the determination of each of the five fractional indices
was <0.001. This demonstrates that the designed network is able
to deconvolve appropriately linear combinations of spectra.
Simulation of random noise

The simulated spectra were then perturbed by adding random
noise values to the (ideal) linear combination of the reference
spectra. Random terms were chosen as 0.01, 0.02 and 0.03; the
normalized amplitude of the helical reference spectrum was
between —1.0 and 1.0. Thus, the random terms represent a

reasonable signal to noise ratio commonly observed for CD
measurements. As expected, the ability of the network to extract
the correct fractional indices from the noisy spectra decreased
with increase of the random noise (Figure 2a). More complicated
topologies of networks will be used in future simulations to see
if these topologies tolerate noisy data.

Simulation of error in protein concentration determination

Apart from random noise, CD spectra contain systematic errors
that arise from errors in the protein concentration measurements.
These determinations are most often performed by colorimetry
and therefore usually contain an error in the order of 1-5%.
It is expected that these errors cause even more trouble to
networks than random noise. The results of simulations on the
effect of these errors on the deconvolution of the linear combined
simulation spectra is shown in Figure 2b. This problem may be
circumvented by using more precise protein concentration
measurements for the spectra used in the training and recall phase,
or by significantly extending the training dataset.

Table II. Comparison of correlation coefficients for the determination of secondary structure fractions from CD measurements, as calculated for several

methods published to date

Method Wavelength Helix Antiparallel Parallel f-turn Random
region (nm) B-sheet B-sheet coil
3Hennessey and Johnson (1981) 178—-260 0.98 0.55 0.63 0.30 0.61
5Manavalan and Johnson (1987) 178-260 0.97 0.78 0.67 0.49 0.86
#Provencher and Glockner (1981) 178 —260 0.96 0.23 0.39 0.51 0.64
bProvencher and Glockner (1981) 187-260 0.98 0.63 0.56 0.65 0.83
Backpropagation NN (this work) 178 -260 1.00 0.91 0.63 0.64 0.96
*Hennessey and Johnson (1981) 190—-260 0.98 0.40 0.00 0.18 0.24
“Manavalan and Johnson (1987) 190-260 0.95 0.57 0.47 0.54 0.69
Backpropagation NN (this work) 200—-250 1.00 -0.36 0.84 0.59 0.99

Data other than this work was taken from ®Manavalan and Johnson (1987) or Johnson (1990). Coefficients b were calculated with an identical data set of 16
proteins. For a discussion of the differences between the correlation coefficients of the two authors cited above, see Johnson (1990).

Table 1lI. Example result of a NN calculation

Helix Antiparallel Parallel B-turn Random
f3-sheet 3-sheet coil

Lactate dehydrogenase
measured 0.41 0.06 0.11 0.11 0.31 sum: 1.00
calculated 0.396 0.008 0.123 0.170 0.305 sum: 1.002
error -0.014 -0.052 0.013 0.060 —-0.005

Myoglobin
measured 0.78 0.00 0.00 0.12 0.10 sum: 1.00
calculated 0.721 -0.036 0.008 0.139 0.172 sum: 1.004
error -0.059 -0.036 0.008 0.019 0.072

Glyceraldehyde-3-phosphate dehydrogenase

measured 0.30 0.09 0.13 0.14 0.34 sum: 1.00
calculated 0.330 0.035 0.076 0.182 0.379 sum: 1.002
error 0.030 —0.055 -0.054 0.042 0.039

Triosephosphate isomerase
measured 0.52 0.00 0.14 0.11 0.23 sum: 1.00
calculated 0.493 0.003 0.116 0.121 0.268 sum: 1.002
error -0.027 0.003 -0.024 0.011 0.038

The learning dataset consisted of nine proteins. recall was performed with the remaining four proteins: measured data are crystallographically derived fractions
from X-ray structure. Removal of hemoglobin and hemerythrin from the learning dataset did not affect the result for the homologous protein myoglobin. The

average error per prediction is 3.3% in this case.
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Application 10 spectra deconvolution

Table I1 shows the result of the NN method compared with
previously published algorithms, as measured by Equation 5. For
the determination of the correlation coefficients, the training set
consisted of nine randomly selected spectra, and the recall set
contained the four remaining spectra. This methodology avoids
misinterpretation due to pattern recognition and represents a more
reliable approach for realistic results. Independently of the
datasets used for learning and recall, the values given in Table
II (which are averaged over four distinct calculations) are better
than those previously published. In Table III, results for a single
calculation are presented as an example; there, four proteins were
chosen with different structural topology to assess a wide range
of input data for deconvolution. The outcome is quite similar
when hemoglobin and hemerythrin (which is homologous to
myoglobin that is used for recall) is excluded from the training
set; structural homology between proteins in the learning and
recall datasets is therefore not necessary for the success of the
method.

Discussion

Table I demonstrates the excellent performance of the method
described in this work, as compared with previous methods. It
is shown that the method works well in the wavelength range
between 178 and 260 nm. However, 8-sheets are not determined
with sufficient precision if wavelengths range only from 200 to
250 nm. The remaining discrepancy between calculations and
measurements may have several reasons. One possible
explanation could be that the fractions of secondary structure
derived from crystallography may be inadequate; a more precise
approach could be a reassignment of secondary structure types
according to the Kabsch and Sander method. This has been
discussed in detail by Perczel et al. (1991). As can be seen from
Table 11, for all four results Equation (2) is surprisingly well
satisfied. However, Equation (1) does not hold in the case of
B-sheets of myoglobin where a negative fraction is obtained. This
is even worse when a limited data set between 200 and 250 nm
is used (data not shown); in this case, several fractions of
secondary structure are predicted to be negative. Thus, a
restriction should be implemented into the currently used NN
to fulfil both Equations (1) and (2).

Another reason for the still limited success of the method could
be a superposition of random noise (from CD signal measure-
ment) and/or systematic errors (from protein concentration
determination) onto the real spectra; it has been shown by
simulations using artificial spectra that the results obtained are
indistinguishable from the results with the spectra from Table
1. However, the results described in this work may be satisfactory
for a wide range of applications. The average error for the
determination of a single fraction is ~3.5%, thus our current
model provides a very good starting point for further investiga-
tions. These will include research on the topology of networks,
transfer functions and parameters. As shown by the present data,
the NN approach may be successfully used to analyze far UV
CD spectra in a quantitative fashion. However, the structure
prediction obtained by the NN method should be taken with care,
as long as neural networks still lack fundamental characterization.

Note

A program, suitable for Personal Computers in the MS-DOS
environment equipped with the Microsoft Windows™ System
(3.0 or higher), will be made available at the end of 1992, and
will be distributed freely. To receive a copy of the program,

Analysis of UV CD spectra by neural networks

readers are requested to use file transfer access to Internet (fip)
and log-in as ‘anonymous’ to the machine with the Internet
address 132.199.1.42 (rbisg1.biologie.uni-regensburg.de). Enter
‘binary’ and ‘cd cd__spectroscopy’, then ‘get nncalc.exe’ and
‘get nndocu.exe’ to transfer the respective files. The program
and documentation binaries are self-extracting, compressed files.
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