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’ INTRODUCTION

Biological macromolecules have an intrinsic ability to switch
between conformationally distinct states under native conditions.
Conformational transitions occur on a wide range of scales, both in
time and space. As a prominent example, adenylate kinase under-
goes large conformational changes of its domains during a catalytic
cycle.1,2 These movements are coupled to small amplitude fluctua-
tions on the picosecond time scale of backbone atoms.3 The ability
to undergo conformational transitions becomes particularly pro-
nounced in the case of ligand binding to several pharmacologically
important proteins, e.g., HIV-1 protease,4 aldose reductase,5 FK506
binding protein,6 renin,7 and DHFR.6 The mutual conformational
adaptation of binding partners is referred to as plasticity. Receptor
plasticity is also a hallmark of DNA8 or RNA9,10 targets. The
examples of receptor plasticity demonstrate that the “rigid receptor
hypothesis”,11 which has served as an underlying principle in
structure-based ligand design (SBLD), is no longer tenable.
Instead, the ability to understand and predict receptor plasticity
becomes central for a more in-depth understanding of molecular
recognition processes12 and success in SBLD.13�16

Motion (ormobility) of a biomacromolecule is a prerequisite for
plasticity. Knowledge about biomacromolecular mobility can be
obtained from different sources. As for experimental approaches,

X-ray crystallography allows to deduce information about protein
mobility from B-factor values or by analyzing structures crystallized
in different conformational states. In general, however, only a
restricted description of the available conformational space is
obtained.17NMR spectroscopy provides information about protein
dynamics in a more direct manner, e.g., in terms of order
parameters, relaxation rates, and conformational variabilities within
the structure ensemble. However, despite many advances, the
technique is still restricted to proteins of a limited size.18 As for
computational approaches, molecular dynamics (MD)19�21 simu-
lation is one of themost widely applied and accurate computational
techniques currently being used in the field of biomacromolecular
computation. Several efforts have been made to overcome the
problem of restricted sampling in MD due to slow barrier crossing
on the rugged energy landscape of biomacromolecules.22,23 These
accelerated conformational search techniques include conforma-
tional flooding,24 replica-exchange MD (REMD),25,26 self-guided
MD,27 and targetedMD (TMD).28,29Despite these improvements
and increased computational power, MD simulations are still
computationally expensive.30,31
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ABSTRACT: A three-step approach for multiscale modeling of
protein conformational changes is presented that incorporates
information about preferred directions of protein motions into a
geometric simulation algorithm. The first two steps are based on a
rigid cluster normal-mode analysis (RCNMA). Low-frequency
normal modes are used in the third step (NMSim) to extend the
recently introduced idea of constrained geometric simulations of
diffusive motions in proteins by biasing backbone motions of the
protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected
regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased
exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When
applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced
very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of
adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are
similar (root-mean-square deviation = 1.0�3.1 Å) to ligand bound conformations. An NMSim generated pathway of conforma-
tional change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally
efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and
pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated
sampling techniques.
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Hence, there is a need to develop computational approaches
that are computationally more efficiently in exploring the con-
formational space. The distance geometry-based approach
CONCOORD generates multiple protein conformations by
satisfying distance constraints derived from a starting
structure.32,33 FRODA, a constrained geometric simulation-
based approach, generates conformations by simulating diffusive
motions of flexible regions and rigid clusters of proteins.34 Both
these approaches have been shown to be promising in SBLD.35,36

However, neither one of the approaches uses any directional
guidance for sampling biologically relevant conformations de-
spite the fact that conformational changes upon ligand binding
occur preferentially along lowest frequency (energy) normal
modes of the unbound protein. These normal modes involve
large-amplitude and correlated motions.37�40

Normal modes can be efficiently and accurately predicted by
coarse-grained normal mode (CGNM) approaches, such as the
elastic network model (ENM)38,41�43 and the rigid cluster
normal-mode analysis (RCNMA).44 For example, the main
directions of conformational changes in tyrosine phosphatase
and adenylate kinase upon ligand binding overlap with low-
frequency modes calculated by RCNMA for the corresponding
unbound conformations.44 A large-scale study on a data set of
335 proteins has recently shown that the low-frequency modes
from ENM/RCNMA agree well with essential dynamics (ED)
modes from MD simulations, both in terms of directions and

relative amplitudes of motions.45 The calculation of modes by
CGNM approaches only takes seconds for these proteins and,
therefore, can be applied also to larger biomacromolecules as well as
in an iterative manner. Consequently, several approaches have
already made use of such directional information, e.g., for steering
MD simulations,46�48 incorporating receptor flexibility in docking
approaches,49�51

flexible fitting of molecular structures,52�55 and
efficient generation of pathways of conformational changes.56�58

In this study, a novel three-step approach, termed NMSim, for
the multiscale modeling of protein conformational changes is
presented (Figure 1). The first two steps are based on previous
work from our lab.44 Initially, static properties are determined
from an all-atom representation of the protein by decomposing
the molecule into rigid clusters and flexible regions using the
graph theoretical approach FIRST.59 In a second step, dynamical
properties of the molecule are revealed by the rotations�transla-
tions of blocks approach (RTB)60 using an ENM representation
of the coarse-grained protein, as implemented in the RCNMA
approach.44 In this step, only rigid body motions are allowed for
rigid clusters, while links between them are treated as fully
flexible. In the final step, termed NMSim, the recently introduced
idea of constrained geometric simulations of diffusive motions in
proteins34 is extended. New protein conformations are generated
in that backbone motions are biased toward directions that lie in
the subspace spanned by low-frequency normal modes, and side
chain motions are biased toward attractive basins derived from

Figure 1. Overview of the RCNMA/NMSim approach. In the first step, a rigid cluster decomposition (RCD) is obtained by FIRST analysis. In the
second step, the RCD is utilized by RCNMA for the calculation of normal modes. In the third step, the mode directions are used by NMSim to generate
stereochemically allowed protein conformations. In order to generate a NMSim trajectory, step two and three are repeated using the previously
generated structure as input.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100461k&iName=master.img-001.jpg&w=441&h=326
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experimental rotamer information. The generated structures are
then iteratively corrected regarding steric clashes and constraint
violations. Particular attention has been paid to the stereochem-
ical accuracy of the generated conformations. This requires that
backbone torsion angles are constrained to favorable regions, in
addition to covalent and noncovalent bonds, like hydrogen bonds
and hydrophobic interactions. In total, when applied repetitively
over all three steps, the procedure efficiently generates a series of
conformations that lie preferentially in the subspace spanned by
low-frequency normalmodes. Results of theNMSim approach are
initially comparedwith those from state-of-the-artMDsimulations
on hen egg white lysozyme (HEWL). The NMSim approach is
then applied to a data set of eight proteins where conformational
changes in terms of domain and loopsmotions have been observed
experimentally. In 7 out of 8 cases, NMSim simulations starting
fromunbound structures are able to sample conformations that are
similar [root-mean-square deviation (RMSD) <3.1 Å] to ligand
bound conformations. Biasing the search toward structures with
lower radius of gyration considerably improves the sampling of
ligand-bound conformations in NMSim. The results show that
incorporating directional information about collective motions
into a constrained geometric simulation-based approach allows for
a thorough sampling of the biologically relevant conformational
space and provides a computationally efficient alternative to MD
simulations for conformation generation.
NMSimModule.A flowchart of theNMSim approach is shown

in Figure 2. The procedure starts with the structural rigidity
analysis of the input protein structure, represented as a bond-
bending network containing covalent and noncovalent bonds.
This yields a decomposition of the protein into rigid clusters and
flexible regions in between. Subsequently, normal modes are
calculated for the input structure by the RCNMAmodule. Finally,
the NMSimmodule, first, distorts the structure along directions of
low-frequency normal modes and, second, generates a stereoche-
mically allowed conformation from the distorted structure.
The RCNMA and NMSim modules are repetitively called

during the simulation. In each RCNMA call, a new set of normal

modes is calculated using the structure previously generated by
NMSim as input. In each NMSim call, multiple new conforma-
tions are generated from linear combinations of these normal
modes. The RCNMA approach has been introduced in ref 44,
and a detailed description is given in the Appendix. In the
following, the NMSim module is described in more detail.
Directions for Structure Distortion. RCNMA yields informa-

tion about amplitudes and directions of motions of CR atoms in
terms of normal modes C

F
and eigenvaluesΛ. However, in order

to efficiently sample the conformational space of the protein, all
non-CR atoms of the structure must also be displaced in the
structure distortion step. For this, the direction of the displace-
ment of atom i of residue j P

Fk
iðjÞ(eq 1) is obtained by adding

a random direction component E
Fk
iðjÞ(eq 2) to the kth normal

mode direction C
Fk
RðjÞ of the respective CR atom:

P
Fk

iðjÞ ¼ FiðjÞ�EF
k

iðjÞ + ð1� FiðjÞÞ�CF
k

RðjÞ ð1Þ

We note that, while the C
Fk
RðjÞ vectors are mutually orthogonal,

the P
Fk
iðjÞ vectors are not due to the random direction component

added. E
Fk
iðjÞ is obtained from

E
Fk

iðjÞ ¼ R
Fk

iðjÞ�½ðrand�RANDSCALINGÞ + jC
Fk

RðjÞj� ð2Þ

where R
Fk
iðjÞ is a random unit vector, which is scaled by the

magnitude of C
Fk
RðjÞ plus a random component formed by the

product of a uniformly distributed random number rand ∈ [0,1]
and the user-defined parameter RANDSCALING. By default,
RANDSCALING = 0.3 Å. We note that, while the magnitude
of the motion due to C

Fk
RðjÞ depends on the protein size (on

average, each CR atom moves by 1/
√
n Å, with n being the

number of CR atoms), the magnitude of the random component
is independent of the protein size. Thus, for proteins larger than
the ones investigated here, it may be advantageous to decrease
the value of RANDSCALING in order to reduce the influence of
the random component on the displacement of atom i.

Figure 2. Programflowandmodules of theNMSim approach.Modules colored in orange are further expandedon their right (BB: backbone; SC: side-chain).

http://pubs.acs.org/action/showImage?doi=10.1021/ci100461k&iName=master.img-002.jpg&w=415&h=230
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Fi(j) (eq 3) is a weighting factor that is determined by the
distance of atom i from the respective CR atom. This follows the
idea that non-CR atoms that are close to the CR atom should have
a large C

Fk
RðjÞ direction component (for CR atoms, P

Fk
iðjÞ = C

Fk
RðjÞ in

eq 1), whereas atoms in the tail region of a side chain should have
a large random component. In the overall NMSim procedure,
this ensures that side chain conformations will be explored
predominantly in a random manner in stereochemically allowed
spacewith a bias toward attractive basins derived from experimental
rotamer information (see Appendix), while backbone conforma-
tions will be explored predominantly in the given low-frequency
normal-mode space:

FiðjÞ ¼
DiðjÞ
DmaxðjÞ

ð3Þ

Here, Di(j) is the distance between atom i and the CR atom of j,
and Dmax(j) is the maximum distance found in residue j.
Linear Combination of Modes in Unbiased NMSim Runs.

For unbiased NMSim runs, the vectors P
Fk
iðjÞ are then linearly

combined (eq 4). A coefficient in the linear combination is
defined as the ratio of a uniformly distributed random number
Ok∈ [�1,1] and a factorωk = (Λk)1/2. Here,Λk is the eigenvalue
of normal mode k.

V
F
i ¼ ∑

m

k¼ 7

Ok

ωk
PF

k
iðjÞ ð4Þ

All P
Fk
iðjÞ vectors belonging to the m low-frequency normal

modes (except for the first six zero-frequency modes) are con-
sidered in the linear combination. By default,m = 56 unless stated
otherwise. The above definition of coefficients ensures that a P

Fk
iðjÞ

vector can enter the linear combination either with a positive or
a negative phase. Furthermore, the influence of a P

Fk
iðjÞ vector is

weighted according to the eigenvalue of the normal mode k, giving
more weight to the low-frequency, i.e., large amplitude, modes.
Linear Combination of Modes in Targeted NMSim Runs.

In targeted NMSim runs, a conformational change vector
Δr
F ¼ r

F
c � r

F
o is used to guide the trajectory toward a target

structure r
F
c, starting from a structure r

F
o. The vectors r

F
c and r

F
o

are the CR atomic coordinates of the two conformations. A coeffi-
cient Zk (eq 5) is now obtained as the projection of the con-
formational change vector Δr

F
onto the normal mode vector C

Fk
.

Zk ¼ Δr
F

3C
Fk ð5Þ

Zk is either used to select the normal mode that overlaps best with
the direction of conformational change or to bias the linear
combination of displacement vectors of atom i of residue j
according to eq 6:

V
F
i ¼ ∑

m

k¼ 7
ZkP

Fk

iðjÞ ð6Þ

Generating a Distorted Structure. Finally, V
F
= [V

F
1,V

F
2,V

F
3, ...,

V
F
N] is used to displace atoms of an input structure in an NMSim

cycle. For this, the magnitude of V
F
is adjusted such as to account

for a predefined step size along the NMSim trajectory. Here, the
RMSD between the current structure and the next distorted
structure is used to define the step size, specified by the
parameter RMSDSTEPSIZE. This results in

Q
F ¼ RMSDSTEPSIZE�N1=2� V

F

jVFj ð7Þ

whereQ
F
is a displacement vector that causes the distortion of the

structure, and N is the number of atoms in the structure. Equa-
tion 7 ensures that the overall distortion of the structure is con-
stant in eachNMSim step. By default the RMSDSTEPSIZE= 0.5 Å.
Structure Correction. Next, a distorted structure is efficiently

corrected using a geometry-based constraints correction ap-
proach. For this, the network of constraints from the rigidity
analysis is used where covalent and noncovalent bonds are
considered as constraints. In addition, constraints for j/ψ
backbone torsion angles are introduced, which are derived from
favorable regions on a Ramachandran map. For χ angles of side
chains, a knowledge-based approach is applied by forcing side
chains to move into the closest favorable rotamer state during the
structure correction. Finally, chirality and planarity constraints
are considered for backbone and side chains, and steric clashes
between atoms are removed. A detailed description of the
structure correction module is given in the Appendix.
Radius of Gyration-Guided NMSim Runs. The search for a

ligand-bound conformation of a protein can be drastically
improved if structural characteristics of the complex are incor-
porated in order to guide the search. In the case of large-scale
conformational changes, like domain closures in proteins upon
ligand binding, it is well-known that the compactness of the
protein structure increases upon binding.61,62 The radius of
gyration Rg (eq 8) is an appropriate measure to describe the
compactness of a protein:

R2
g ¼ 1

n ∑
n

i¼ 1
ðrF i � R

F
cÞ2 ð8Þ

where R
F
c is the center of geometry of n CR atoms and r

F
i is the

atomic position of atom i. Here, only CR atoms are considered.
In a radius of gyration-guided NMSim simulation, the trajec-

tory is tailored toward the bound structure by selecting the
pathway that leads to a decrease inRg.We note that Rg is not used
for enforcing the generation of a more compact protein structure
by influencing the structure distortion step: Conformations are
still generated by structure distortion along directions of random
linear combinations of low-frequency normal modes and sub-
sequent structure correction. Rather, the guiding occurs because
out of several (by default, three) such conformations generated
by repeated NMSim cycles, the one with the lowest Rg is selected
as a starting point for further trajectory exploration in the next
simulation cycle. That way, the pathway of structural change still
lies in the subspace spanned by low-frequency normal modes.
We also note that no experimentally determined target value of
the radius of gyration of the bound structure is needed here.

’MATERIALS AND METHODS

Comparison with MD Simulation. For comparison with
NMSim generated conformations, MD generated conformations
of HEWLwere taken from a recent study by Koller et al.63 Here, a
MD simulation of 100 ns length of HEWL (PDB code 1hel)64

was performedwith Amber9 under periodic boundary conditions
in the NVT ensemble at T = 300 K. The force field ff99SB was
used together with the TIP3P water model.63 Unbiased NMSim
runs were performed on the same starting structure with the
default parameter set described in Table S1, Supporting Infor-
mation (see also the Ensemble Generation with NMSim
Section). In total, four different NMSim simulations were
performed by varying the number of low-frequency modes
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(i.e.,m= 11, 16, 31, and 56 in eq 4). In each of theseNMSim runs,
10 000 conformations were generated using a simulation cycle of
1000 and an NMSim cycle of 10 steps. Every 10th structure was
then taken for the analysis, resulting in an ensemble of 1000
conformations. In order to see the effect of the length of the
simulation, 3 ensemble sets were created using the first 100, 500,
and 1000 conformations, respectively, henceforth referred to as
“one-tenth”, “one-half” and “complete” sets.
In order to compare the MD generated ensemble to the

NMSim generated ones, the mass-weighted averages of root-
mean-square fluctuations (RMSF) of heavy atoms were calcu-
lated for each residue. Furthermore, essential dynamics (ED)65,66

analysis was performed in order to determine the extent of
conformational sampling during the NMSim simulations. To do
so, ED calculations were performed on the MD ensemble, and
the NMSim ensemble sets were then projected onto the plane
spanned by the first two ED modes with the highest eigenvalues.
Ptraj of the Amber8 package67 was used for the fluctuation and
the ED calculations.
The stereochemical quality of NMSim generated structures

(using m = 56) was analyzed by the Procheck68 program and
compared to the MD generated structures. For this, 100 equally
spaced structures were taken from theMD andNMSim trajectories.
Additionally, these results were compared to the stereochemical
quality of 130 structures of HEWL obtained from the Protein Data
Bank; these structures were selected by requiring a 100% sequence
identitywith the structure of PDBcode 1hel. This setwill be referred
to as “EXP” hereafter. Furthermore, 100 high-resolution (0.8�1.7
Å) and nonhomologous crystal structures available from the
Richardsons0 lab69 were also subjected to stereochemical analysis.
This set will be referred to as “EXPTOP” hereafter.
Finally, the effective conformational energy of the MD and

NMSim generated structures as well as the EXP structures was
calculated. The effective energy is the sum of the gas-phase
energy, determined with the force field ff99SB, and a solvation
free energy, determined with the generalized Born model by
Onufriev, Bashford, and Case70�72 (i.e., igb = 5 in Amber9) plus
a nonpolar contribution proportional to the solvent-accessible
surface, using γ = 0.0072 kcal mol�1 Å�2 as a surface tension. As
structures obtained from MD, NMSim, or experiment do not
necessarily reside in local minima of the effective energy surface,
all structures were minimized by 100 steps of conjugate gradient
minimization with respect to the effective energy, thereby
tethering all atoms with harmonic restraints to the starting
coordinates using a force constant of 2 kcal mol�1 Å�2. That
way any gross conformational change of a structure is prevented;
on average, the all-atom RMSD between the starting and relaxed
structure is <0.2 Å.
Data Set of Proteins.The NMSim approach was then applied

to a data set of eight proteins for which important conformational
changes have been observed upon ligand binding and for which
crystal structures of an unbound (open) and ligand-bound
(closed) conformation were available. In order to analyze the
usefulness and the limitations of the NMSim approach, the data
set is subdivided into two categories, domain and loop motions,
based on the types of conformational changes observed upon
ligand binding. The data set is listed in Table 1. The proteins in
the data set have been used previously in other normal-mode
studies38,44,49,73 and show both “induced fit” and “conforma-
tional selection” types of conformational changes.74,75

Ensemble Generation with NMSim. In order to explore the
extent up to which experimentally observed conformationalT
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changes can be simulated by NMSim, the method was applied to
the open conformation of proteins in the data set (Table 1).
Three types of simulations were performed: unbiased, radius of
gyration guided, and targeted.
Unbiased NMSim runs are performed without any informa-

tion about the target conformation, and hence, random linear
combinations of low-frequency normal modes are used to
generate a trajectory (eq 4). In general, unbiased NMSim is
run with the default parameter set described in Table S1,
Supporting Information. By default, 5000 conformations are
generated per run using 500 simulation cycles and 10 NMSim
cycles. Every 10th conformation is selected for analysis. For the
domain motion data set, only the first five normal modes and a
smaller side-chain randomization parameter (i.e., RANDSCAL-
ING = 0.05 Å) are used in order to focus more on the exploration
of large-scale backbone conformations. Furthermore, 10 inde-
pendent unbiased trajectories are generated for each protein in
the domain motion data set, generating 500 conformations per
run using 500 simulation cycles and one NMSim cycle. These
settings proved particularly promising for a large-scale explora-
tion of the conformational space of a protein. For generating
5000 conformations of adenylate kinase with 214 residues,
NMSim takes about 2 days of computational time on a single
core of a current desktop computer.
Radius of gyration-guided NMSim runs are performed with

the assumption that the closed structure has a smaller Rg than the
open structure. Consequently, protein movements that lead to
lower Rg values are favored throughout the run by generating
three conformations at each step and then selecting the one with
the lowest Rg for further trajectory exploration. Thus, out of 1500
conformations generated per run by default, using 500 simula-
tion cycles and one NMSim cycle, 500 conformations represent
the pathway of motion at the end.
Targeted NMSim runs are performed incorporating informa-

tion about the closed conformation in that the best combination
of normal modes as defined by eq 6 is used at each structure
distortion step. By default, 500 conformations are generated
using 500 simulation cycles and one NMSim cycle.
Analysis of Simulation Results. Intrinsic fluctuations of a

protein near its equilibrium state in the open conformation
correlate with the conformational change of the protein upon
complex formation.3,76 In order to verify if this argument holds
for NMSim generated structures, CR root-mean-square fluctua-
tions (RMSF) derived from the 5000 structures generated by
unbiased NMSim simulations are compared with conformational
variabilities between the respective open and closed conforma-
tions. These RMSF were calculated using ptraj of the Amber 8
package.67 In order to observe to what extent a closed structure is
approached during NMSim simulations started from the open
conformation, the backbone RMSD was calculated between the
generated structures and the closed conformation. For proteins
with loopmotions, the backbone RMSD of only the moving loop
region (Table 1) is calculated after aligning the rest of the protein
backbone. Furthermore, essential dynamics (ED)65,66 calcula-
tions were performed for adenylate kinase (ADK) in order to
compare essential motions observed in unbiased NMSim simu-
lations with those derived from an ensemble of experimental
structures. For this, a principal component analysis was per-
formed using ptraj of the Amber8 package67 on CR atoms of an
ensemble of eleven crystal structures of ADK77�80 [PDB code
(chain): 1ake (A), 1ank (A), 4ake (A), 4ake (B), 1dvr (A), 1dvr
(B), 1e4v (A), 1e4y (A), 1e4y (B), 2eck (A), 2eck (B)].

Subsequently, all experimental and NMSim generated structures
were projected onto the plane described by the first two ED
modes. Finally, calculations of effective conformational energies
were performed for subsets of ADK conformations generated by
unbiased NMSim simulations, as described above.
Pathway Generation with NMSim. Pathways of conforma-

tional changes from the open to the closed structures were
generated for ADK using two types of simulation: targeted
NMSim and radius of gyration-guided NMSim simulations. In
general, default parameters were used for both types of simula-
tions (Table S1, Supporting Information). However, each inter-
mediate conformation was generated using the single “best”
mode instead of a linear combination of modes. For targeted
NMSim simulations, out of the first 50modes, themode that best
overlaps with the direction of conformational change (eq 5) was
used for this in each NMSim cycle. For radius of gyration-guided
NMSim simulations, 10 structures were generated by following
either direction of the first five modes, and the structure with the
lowest radius of gyration was selected for further exploration of
the pathway in each NMSim cycle.
In order to analyze the order of the domain closure in ADK, the

reaction coordinates described by Whitford et al.81 were used. The
reaction coordinate RLID�CORE (RNMP�CORE) is defined as the
distance between the centers of mass of the LID (NMP) and
CORE domains, respectively. In order to further verify the NMSim
pathway, intermediate structures generated by NMSim simulations
were compared with 11 crystal structures of ADK in terms of CR
RMSD.82 For this, a crystal structure was assigned to each
intermediate structure based on the lowest CR RMSD identified
between the set of 11 crystal structures and the respective inter-
mediate structures, similar to a study by Maragakis and Karplus.82

’RESULTS AND DISCUSSION

Comparison with MD Simulation: HEWL As a Test Case.
Initially, results of NMSim simulations were compared with
those from state-of-the-art MD simulations using HEWL as a
test case. HEWL is a well-studied40,83�86 protein comprised of
129 residues, which has repeatedly been used for the evaluation
of force fields.63,87�90 The MD simulation of HEWL63 took
approximately 4 months on 4 CPUs on a state-of-the-art work-
station, whereas the NMSim simulation took 30 h on a single
CPU on the same workstation.

RMSFs obtained from different NMSim runs agree well with
fluctuations derived from the MD ensemble with correlation
coefficients between 0.72 to 0.79 for the complete NMSim
simulations (Table S3 and Figure S9, Supporting Information).
These results vary little if the number of low-frequency modes is
varied between 5 and 50. As for the influence of the length of the
simulation, using only the first half of the NMSim trajectory
yields essentially the same good agreement between NMSim and
MD derived residue fluctuations as obtained for the complete
trajectory. If only one-tenth of the NMSim trajectory is used, the
agreement between the fluctuations deteriorates, however.
In order to determine the extent of conformational sampling

during the NMSim simulations, essential dynamics (ED)
calculations65,66 were performed. In general, NMSim conforma-
tions are found to be well distributed along the first two principal
directions of motions observed during the MD simulation in the
case of the complete simulation as well as the one-half simulation
(Figure S10, Supporting Information). In contrast, if only one-
tenth of the NMSim trajectory is considered the conformational



1610 dx.doi.org/10.1021/ci100461k |J. Chem. Inf. Model. 2011, 51, 1604–1622

Journal of Chemical Information and Modeling ARTICLE

sampling becomes much more restricted. The results also show
that, regardless of the simulation length, the principle directions
of motions derived byMD are better captured byNMSimwhen 5
or 10 low-frequency modes are used instead of 25 or 50 modes.
This finding can be understood in that fewer modes lead to a
more pronounced sampling in the principal directions of mo-
tions. In contrast, using more modes allows a more detailed
sampling but leads to a more restricted sampling in the principal
directions. Thus, for proteins with pronounced conformational
changes, reducing m is expected to result in a better sampling of
the dominating motions. Following this observation, we have
used the first 5 low-frequency modes for proteins that involve
domainmotions and the first 50modes for proteins with all other
types of motions.
The quality of NMSim generated conformations were analyzed

using Procheck68 and was compared with MD generated con-
formations and crystallographic structures (Table S4, Supporting
Information). The Procheck results show that the NMSim
generated conformations are of a higher stereochemical quality
than the MD derived conformations. Specifically modeling j/ψ
constraints in NMSim resulted in the highest population of the
core region (92%) of the Ramachandran map, which is similar to
the value obtained for the high-resolution crystallographic struc-
tures of the EXPTOP set (91%). In turn, the population of the
generously allowed or disallowed regions of the Ramachandran
map is zero in the case of NMSim generated conformations. The
Procheck G-factor provides a measure of how normal a given
stereochemical property is. A low G-factor indicates that the
property corresponds to a low-probability conformation; ideally,
the G-factor value should be above �0.5. On average, the overall
G-factor value forNMSim generated conformations is around�0.3,
whereas this value is considerably lower (�0.86) for MD struc-
tures. Similarly, aromatic, carbonyl-containing, and guanidino
moieties of side chains are planar in NMSim generated con-
formations; this proportion is higher than the one found in
crystallographic structures. Only 56% of thesemoieties are planar
in MD generated conformations.
In terms of the effective conformational energies, on average,

the NMSim generated structures are almost similar (�5078 (
5.0 kcal mol�1; average( standard error in the mean; Table S5,
Supporting Information) to the EXP structures (�5075 ( 24.4
kcal mol�1), whereas the MD structures show an effective
conformational energy that is lower (�5383 ( 2.4 kcal mol�1).
We note, however, that the MD structures were generated with
the same force field that was also used for the effective energy
calculations, whereas the NMSim and EXP structures were only
allowed to relax bymeans of a restrainedminimization in order to
prevent gross conformational changes. As a result, particularly
dihedral, van der Waals, and electrostatic energy components are
larger in the case of NMSim generated and EXP structures than
in the case of MD generated structures (Table S5, Supporting
Information). In turn, the generalized Born and nonpolar
components are lower for NMSim generated and EXP structures.
In summary, these results demonstrate that NMSim simulations
generate stereochemically and energetically favorable structures.
Data Set of Proteins with Pronounced Conformational

Changes. Next, the NMSim approach was applied to proteins
for which important conformational changes have been observed
upon ligand binding. The domain motion data set (Table 1)
contains five proteins that are diverse in terms of their structures,
sizes, andmotions. Adenylate kinase (ADK) is amonomeric enzyme
that contains a main domain (CORE), an ATP-binding domain

(LID), and a NMP-binding domain (NMPbind).77 Aspartate
aminotransferase (AST) is a homodimeric enzyme,91 as is
citrate synthase (CTS), the largest protein in the data set with
860 residues.92 Calmodulin (CLM), the smallest protein in the
data set with 148 residues, consists of two globular domains
separated by a flexible linker.93 The structure of the lysine/
arginine/ornithine-binding protein (LAO) is bilobate, and the
two lobes are held together by two connecting segments.94 ADK
and LAO show global and hinge-bending motions of domains,95

AST and CTS show localized motions of small domains and
sheer motions,95 and CLM shows a large-scale bend and twist
motion of two domains.96

In addition to domain motions, three functionally important
loop motions are investigated in this study (Table 1). For

Figure 3. CR atom fluctuations of proteins with domain movements
obtained from ensembles generated by unbiased NMSim simulations
(solid lines; +) and structural deviations between the open and closed
structures (dotted lines; �). (a) Adenylate kinase; (b) aspartate
aminotransferase; (c) calmodulin; (d) citrate synthase; and (e) LAO
binding protein.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100461k&iName=master.img-003.png&w=240&h=438
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tyrosine phosphatases (TYP), a ligand-induced conformational
change has been observed, which moves Asp356 on the β7�R4
loop into the active site where it can function as a general acid.97

In triosephosphate isomerase (TIM), the functionally important
loop 6 undergoes a remarkable conformational change upon
ligand binding, and the tip of the loop moves about 7 Å to form a
lid over the bound ligand.98,99 NMR results show that the loop
also closes as a natural motion of the enzyme in the absence of the
substrate.100 For both TYP and TIM, loop motions have already
been shown to be governed by low-frequency modes.44,73 In
contrast, it has been suggested49 that higher frequency modes are
involved in the midscale loop rearrangements of the catalytic
subunit of cAMP-dependent protein kinase (CAPK). Thus,
CAPK is a valuable test case to investigate to what extent
observed movements can still be modeled when using a combi-
nation of only the first 50 modes but without considering any a
priori information about the closed loop conformation.
Computed RMS Atomic Fluctuations vs Conformational

Variabilities from Experiment. CR RMSFs observed in en-
sembles generated by unbiased NMSim simulations were com-
pared with conformational variabilities derived from the
respective open and closed conformations (Figure 3). For the
domain motion data set, the overall trends of experimental
conformational variabilities are reproduced very well by the
NMSim simulations, with correlation coefficients r > 0.70 for
all cases except CLM and as high as r = 0.92 in the case of ADK.
Here, the NMSim simulation captures the hinge-bending move-
ments of the LID and NMPbind domains very well. Likewise,
mobile regions are well recognized in the case of CTS, which
shows a sheer motion upon ligand binding,95 resulting in high
conformational variabilities of two regions in either monomer.
The low correlation coefficient observed for CLM (r = 0.32) can
be attributed to local rearrangements within the two domains
upon Ca2+ binding.93 These rearrangements lead to the exposure
of large hydrophobic surfaces in both domains of CLM.101 There
are two limitations of the present NMSim approach that prevent

a successful modeling of such a conformational change. First, the
local rearrangements are not well described by low-frequency
modes,102 especially as the overall intrinsic motions of CLM are
dominated by large-scale movements of the domains. Second,
the conformational change requires a substantial change in the
constraint network in that hydrophobic constraints that are
present in the starting structure need to be broken, which is
not permitted in the current NMSim version. Regarding the
magnitude of fluctuations, a good agreement is observed in the
cases of ADK, CLM, and LAO. This result is remarkable, as no
scaling of the computed values is applied here, in contrast to what
is usually done if results are reported for ENM approaches.103

However, in the case of AST and CTS, RMSF derived from
NMSim simulations exceed observed movements in the experi-
mental structures. This observation indicates that the constraint
network underlying the geometric simulations might be under
constrained in those cases.
For the loopmotion data set, CRRMSFs derived fromNMSim

generated conformations are compared with structural devia-
tions derived from the respective open and closed structures as
well as CR RMSFs computed from B-factor values of the open
structures (Table 2). In contrast to the domain motion data set,
in general weak correlations are found with correlation coeffi-
cients between ∼0.3 and ∼0.4 when fluctuations from NMSim
generated ensembles are compared to structural deviations
(Table 2). On the one hand, in the case of TYP and TIM, large
fluctuations in the β7-R4 loop and loop 6 regions are observed in
NMSim generated structures that match perfectly with the
observed conformational changes upon ligand binding (Figure
S1, Supporting Information). On the other hand, large fluctua-
tions in some parts of the proteins, e.g. residues 335�343 in TYP
and residues 65�78 in TIM, do not correlate with observed
conformational changes. Still, the fluctuations predicted by
NMSim do correlate with those derived from B-factor values
(r = 0.64), which demonstrates that highly fluctuating regions
in the NMSim ensemble of TYP agree with regions that have an

Table 2. Results of NMSim Simulations

RMSDa correlation

protein openb unbiasedc targetedc radius of gyration guidedc NMSimd ENMe

Domain

adenylate kinase 7.15 3.06 (1.0, 3.0) 0.93 2.36 (62.8, 71.8) 0.92 0.90

aspartate aminotransferase 1.55 0.98 (2.1, 8.7) 0.60 1.21 (46.4, 61.8) 0.71 0.62

calmodulin 9.80 6.71 (1.0, 3.1) 2.95 5.32 (40.2, 73.6) 0.32 0.22

citrate synthase 2.70 1.55 (0.6, 7.0) 0.91 1.37 (48.4, 87.6) 0.86 0.80

LAO binding protein 4.67 2.31 (1.0, 3.8) 0.59 1.75 (51.2, 82.4) 0.70 0.53

Loop

tyrosine phosphatase 3.18 1.86 (21.6, 44.6) 0.95 1.58 (48.8, 79.0) 0.43 (0.64) 0.42

triosephosphate isomerase 4.50 2.01 (7.0, 16.8) 0.90 2.24 (23.6, 66.4) 0.39 (0.06) 0.37

CAMP-dependent protein kinase 1.68 1.14 (7.4, 20.2) 0.79 0.67 (20.0, 31.2) 0.28 (0.34) 0.41
aBackbone RMSD with respect to the closed structure, in Å. For proteins with loop motions, only the backbone RMSD of the moving loop region is
calculated after aligning the rest of the protein. bRMSD between open and closed structures. cRMSD of the conformation most similar to the closed
structure. In parentheses, the percentages of generated structures that are similar to the closed structure are given, considering RMSD thresholds <0.5
and <1.0 Å with respect to the conformation being itself most similar to the closed structure. The conformations were generated by the denoted NMSim
simulation variants. dCorrelation coefficient between CR atom fluctuations obtained for an ensemble generated by unbiased NMSim simulations and
structural deviations determined from the open and closed structures. In parentheses, the correlation coefficient between CR atom fluctuations obtained
for the NMSim generated ensemble and fluctuations derived from B-factor values of the open structure are given. eCorrelation coefficient between CR
atom fluctuations obtained for an ENM representation of the open structure using the ElN�emo web server (with default settings)106 and conformational
variabilities determined from the open and closed structures.
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intrinsic ability to move. Apparently, the two crystal structures of
TYP considered here do not capture these movements. In
contrast to the TIM and TYP cases, the glycine-rich loop in
CAPK does not show large fluctuations in the NMSim ensemble,
although this loop has been previously reported to be
mobile.104,105 Instead, the region containing the F-to-G helix
loop and the G helix (residues 238�250) is found to be overly
mobile in NMSim.
These results demonstrate that the NMSim approach effec-

tively captures the information available in low-frequency normal
modes and translates it into mobility predictions, in particular for
large-scale movements. This result is notable in that the reported
fluctuations are derived from NMSim simulations and do not
consider any experimental information about the closed struc-
ture. Previous studies have also shown a good agreement between
fluctuations obtained from a (collection of) normal mode(s) and
experimentally observed conformational changes.37,38,43,44,76

When compared to RMSF obtained for an ENM representa-
tion of the open structures by the ElN�emo server,106 in four
out of eight cases NMSim outperforms ENM in reproducing
experimental conformational variabilities as judged by differ-
ences in the correlation coefficients of at least 0.05 and as high
as 0.17 (Table 2); in turn, ENM outperforms NMSim in
one case.
Closed Conformations Observed in Unbiased NMSim

Simulations Started from an Open Structure. The above
findings provided the incentive for us to search for closed
(bound) conformations in the ensembles generated by NMSim
simulations, which were started from open structures. For the
domain motion data set, Figure S2, Supporting Information
shows the results of comparing NMSim generated conforma-
tions with respective closed conformations in terms of backbone
RMSD for all 5 proteins and 10 independent NMSim trajectories
in each case. In CTS—dominated by sheer motions—most of
the trajectories move initially toward the closed structure before
they start to drift away. In contrast, for systems dominated by
hinge bending motions, like ADK or LAO, most of the trajec-
tories move preferentially either toward or away from the closed
conformation. Still, some trajectories show a reversal of the
preferred direction of motion, such that both domain closing and
opening movements are explored during one simulation run.
As for RMSD between experimental structures, open and

closed conformations deviate by 1.55 (AST) to 9.80 Å (CLM)
(Table 2). In view of these numbers, it is reassuring that for all
cases structural deviations could be reduced by unbiased NMSim
simulations, with a maximal reduction of 4.1 Å RMSD in the case
of ADK. When considering minimal RMSD between simulated
conformations and respective bound conformations, values as
low as 1.0 (AST) to 3.0 Å (ADK) are found for all cases except
CLM. In the case of ADK, the conformation generated by
NMSim is thus more similar to the closed structure than the
one reported previously in a study using tCONCOORD (RMSD =
3.3 Å).33 As for CLM, no conformation could be generated that is
satisfyingly similar to the closed structure despite movements of
3 Å RMSD toward the closed structure. As discussed above, this
is due to local rearrangements within the two domains of CLM,93

which are not well described by low-frequency modes.107 In
addition to reporting the minimal RMSD value found for an
NMSim generated conformation with respect to the closed
structure, the ensemble population density can be analyzed with
respect to the RMSD value. Considering RMSD values up to 0.5
(1.0) Å larger than the minimal RMSD, on average, 1 (5)% of

the generated structures is similar to the NMSim generated
conformation that itself is most similar to the closed structure
(Table 2). This demonstrates that conformations with a minimal
RMSD are not isolated incidences in RMSD space but are
surrounded by structurally similar conformations.
For the loop motion data set, backbone RMSD of the selected

loop regions with respect to the closed structures is determined
for each NMSim generated conformation along the trajectory
(Table 2 and Figure S3, Supporting Information). In the case of
TYP and TIM, the unbiased NMSim simulations show opening
and closing movements of the β7�R4 loop and loop 6,
respectively. The structural deviations between open and closed
structures can be reduced by up to 2.5 Å RMSD (TIM), and the
generated conformations most similar to the experimentally
determined closed structures show deviations of 1.2 (CAPK),
1.9 (TYP), and 2.0 (TIM) Å (Table 2). As for the ensemble
population density, on average, 12 (27)% of the generated loop
conformations are similar to the NMSim generated conforma-
tion that itself is most similar to the closed structure, again
considering RMSD values up to 0.5 (1.0) Å RMSD larger than
the minimal RMSD (Table 2). These results confirm that even
loops are engaged in intrinsic motions of a protein toward a
closed conformation, as has been shown both experimentally100

and theoretically73,108 for the loop 6 closure in TIM. Conse-
quently, these motions can be exploited for the generation of
conformations that resemble bound protein states.
The above results on proteins with pronounced conforma-

tional changes show that NMSim simulations can be successfully
applied for conformational sampling in the case of both hinge
and sheer motions, as long as the motion is not dominated by a
local rearrangement of secondary structure. However, as the
approach relies on the directional guiding of low-frequency
normal modes, it might fail for systems where normal mode
approaches have general limitations, e.g., in the case of closed-to-
open transitions. Finally, NMSim was shown to work also for
functionally important loop motions as long as these motions are
intrinsic and not ligand induced.
Pathway Generation by Targeted NMSim Simulations. If

information about a closed conformation is available, then this
information can be used for biasing coefficients of the linear
combination of normal modes that is used for the distortion of
the protein structure (eq 6). This leads to a targeted NMSim
simulation, which allows for the generation of a nonlinear path-
way between the open and closed conformations. Such a pathway
provides a valuable means for visualizing even complex protein
movements, which helps in understanding the relationship
between protein motion and function (see also below).34,109

Moreover, it can serve as input to more sophisticated techniques
such a nudged elastic band,110 transition path sampling,111 or
umbrella sampling.112,113

When performing targeted NMSim simulations starting from
open structures of the domain motion data set, deviations
between the open and closed structures could be reduced by
more than 6.0 Å RMSD. For all systems but CLM, a final RMSD <
1.0 Å with respect to the closed conformation is obtained
(Table 2). There are two reasons for the residual deviation from
the closed structure. First, only the first 50 low-frequency normal
modes are applied here in the structure distortion step such that
small-scale motions required for the final approach to the closed
structure are not accessible in the spanned subspace.107 Along
these lines, a related study combining normal mode calculations
with Monte Carlo simulation techniques reached the closed
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structure of ADK only up to 2.3 Å RMSD using 10 low-frequency
modes.114 Second, details of the constraint network may differ
between the open and closed structures, so that rigid or

overconstrained regions determined in the rigid cluster decom-
position (RCD) step with the open structure may not be
appropriate anymore for conformations similar to the closed
structure. The latter may be overcome by approaches for break-
ing and reforming constraints during a simulation, which is an
area of active research in our group. In the case of the loop
motion data set, conformations generated by targeted NMSim
simulations approach the closed structure up to ∼0.9 Å RMSD
for all three proteins (Table 2). These values could even be
further decreased if higher frequency modes are used in addition,
as shown previously.49

Improved Sampling of Closed Conformations by Radius
of Gyration-Guided NMSim Simulations. Results from the
targeted NMSim simulations provide a lower bound up to which
the closed structure can be approached. For all investigated
systems, conformations that are more similar to the closed
structures have been obtained compared to if unbiased NMSim
simulations had been performed. This finding prompted us to
develop a simulation variant where a driving force fosters the
transition to the closed structure but without requiring any a
priori knowledge about the closed structure. This led to radius of
gyration-guided NMSim runs (eq 8), which are based on the
assumption that ligand binding usually results in a more compact
protein conformation due to domain or loop closure.61,62 The
way this NMSim variant was implemented ensures that the
structure generation is not influenced by a driving force. Thus,
trajectories are still allowed to proceed through the subspace
spanned by low-frequency normal modes. Instead, the radius of
gyration criterion is only used for selecting more compact
conformations along a trajectory. Furthermore, no experimental
target value of the radius of gyration is required.
The comparison between the unbiased and the radius of

gyration-guided NMSim simulations reveals for the domain
motion data set that the latter method generates conformations
that are more similar to a closed structure for four out of five cases
(Table 2). This improvement can be as large as 1.4 Å in the case
of CLM, although in no case a conformation as similar to a closed
structure as obtained by targeted NMSim simulations is gener-
ated. The improvement is, in general, more obvious for hinge
bending motions (ADK, LAO, and CLM) than sheer motions
(CTS). This reflects that proteins that show hinge-bending
motions are subject to a larger compaction upon ligand binding
than are proteins with sheer motions. In terms of efficiency, the
improvement is achieved with about 3.3 times lower computa-
tional costs: Instead of performing 10 independent unbiased
NMSim simulations each generating 5000 conformations, here a
single radius of gyration-guided simulation is performed that
generates 500 conformations. Computing a single trajectory is
sufficient because it was found in initial tests that trajectories
generated by radius of gyration-guided NMSim simulations do
not differ significantly (data not shown).
Figures 4 and S4, Supporting Information illustrate for pro-

teins of the domain motion data set the extent by which radius of
gyration-guided NMSim simulations were successful in reaching
a closed structure. The generated conformation that is most
similar to the closed structure is shown along with the respective
open and closed structures. In the ADK case (Figure 4a), the
large-scale conformational change of the LID domain is well
described by the radius of gyration-guided simulation despite the
fact that no a piori information about the closed structure was
used. However, the NMPbind domain moves only halfway
toward the closed structure, in agreement with the suggestion

Figure 4. Superimposition of the open (blue), the closed (cyan), and
the NMSim generated conformation most similar to the closed structure
(magenta) using radius of gyration-guided NMSim simulations. (a)
Adenylate kinase; b) calmodulin; and c) LAO binding protein.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100461k&iName=master.img-004.jpg&w=202&h=574


1614 dx.doi.org/10.1021/ci100461k |J. Chem. Inf. Model. 2011, 51, 1604–1622

Journal of Chemical Information and Modeling ARTICLE

that its closing follows a ligand-induced mechanism.81 Still, a
conformation as similar as 2.4 Å to the closed structure results.

In the LAO case (Figure 4c), again a large hinge-bending motion
of 3 Å RMSD toward the closed conformation is obvious, and the
closed conformation is approached up to 1.7 Å RMSD. Finally,
the radius of gyration-guided NMSim simulation captures the
large-scale movement of CLM, too, (Figure 4b) but fails to
reproduce the local rearrangements within the two domains due
to Ca2+-binding,93 resulting in an RMSD with respect to the
closed structure of 5.3 Å.
For the loop motion data set, fostering a lower Rg while

moving in the subspace spanned by low-frequency normal modes
again guides the trajectories toward the experimentally observed
closed structures in all three cases (Figure S3, Supporting
Information): For TYP, TIM, and CAPK, conformations as
similar as 1.58, 2.23, and 0.66 Å RMSD are generated, respec-
tively (Figure 5, Table 2). Thereby, lower RMSD values than in
the case of unbiased NMSim simulations are obtained for TYP
and CAPK. Furthermore, in the TYP and TIM cases, the loops
fluctuate around the closed conformation, which means that
fostering lower Rg values does not deteriorate the loop region in
the course of the trajectory. However, this is not always the case
because for CAPK the loop starts to move away from a state
similar to the closed structure.
These results are encouraging in view of protein�ligand

docking. Here, a drop in docking accuracy compared to redock-
ing was often found to be mirrored by the degree to which a
protein moves upon ligand binding,15,115 so that docking to an
apo form usually shows the largest deterioration.13 In this regard,
being able tomove closer to a bound conformation by up to 4.8 Å
RMSD and to come as close as 0.7 Å RMSD to a bound
conformation without requiring any a priori knowledge about
this conformation is a promising achievement.
Furthermore, when analyzing the population density of en-

sembles generated by radius of gyration-guided NMSim runs, it
becomes obvious that in 6 out of 8 cases more than 40% of the
ensemble is very similar to that conformation being itself most
similar to the closed structure (again using an RMSD threshold
up to 0.5 Å) (Table 2). This illustrates the potential of radius of
gyration-guided NMSim runs for generating a focused set of
candidate structures for docking approaches when starting from
an apo structure. The number of candidate structures can be
further reduced by structurally clustering the ensemble and by
only considering cluster representatives. Evaluating the gener-
ated structures energetically appears to be difficult because the
conformational variability of a receptor leads to a disfavorable
reorganization energy that can be large and vary strongly, even
for relatively well preorganized binding sites.116 As an alternative,
a scoring function that evaluates the “ligandability” of a generated
conformation can be helpful, as has been shown with an even
simpler approach that worked well in a related scenario.117

Essential Dynamics and Sequence of Domain Move-
ments: ADK As a Test Case. In order to further determine the
extent of conformational sampling during NMSim simulations,
essential dynamics (ED) calculations65,66 were performed on
ensembles of NMSim generated conformations and experimen-
tally determined structures. ADK was chosen for this because
ADK is a well-studied protein in terms of catalytic mechanism
and conformational flexibility and has been used as a test case in
other theoretical studies.81,82,118 The ensemble of experimentally
determined structures consists of 11 crystal structures of ADK.77�80

These structures can be subdivided into three groupswith respect to
the observed ADK conformations: (i) structures near the open
conformation [PDB code (chain): 4ake (A) and 4ake (B)];

Figure 5. Superimposition of the open (blue), the closed (cyan), and
the NMSim generated conformation most similar to the closed structure
(magenta) using radius of gyration-guided NMSim simulations. (a)
Tyrosine phosphatase; (b) triosephosphate isomerase; and (c) cAMP-
dependent protein kinase.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100461k&iName=master.img-005.jpg&w=204&h=566
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(ii) intermediate structures in between the open and closed
conformations, where the LID domain is completely closed and
the NMPbind domain is still open [1dvr (A) and 1dvr (B)]; (iii)
structures near the closed conformation [1ake (A), 1ank (A), 1e4v
(A), 1e4y (A), 1e4y (B), 2eck (A), and 2eck (B)]. The ensemble of
NMSim conformations was obtained by pooling 10 trajectories
generated by unbiased NMSim runs, which had been started from
the open form of ADK (4ake (A)).
The projection of crystal and NMSim generated ADK struc-

tures onto the plane spanned by the first two EDmodes obtained
from the ensemble of crystal structures is shown in Figure 6. The
first ED mode represents to a large extent the movement of the
LID domain. The projection map shows that NMSim generated
conformations come close to experimental structures in ED
space. This is particularly pronounced in the case of the closed
ADK structure, where in 1 out of 10 NMSim trajectories
conformations were generated that show a closing of the LID
and NMP domains to an extent seen in the closed experimental
structures (red triangles in Figure 6). In contrast, 2 out of 10
NMSim trajectories sample conformations that show a further
opening of the LID domain (gray triangles and pink squares in
Figure 6). So far, no structure from experiment has been
described that shows such an opening. Considering those 100
conformations with the largest projection values along the first
ED mode, an average effective conformational energy of �7398
( 5.5 kcal mol�1 is computed. For comparison, the average
effective conformational energy over 500 conformations of
the combined ensemble (obtained by extracting every 10th struc-
ture of each trajectory) is �7412 ( 4.56 kcal mol�1. Although
these numbers indicate that the further opened conformations
are less favorable, they do not rule out that these conformations
can exist given the statistical uncertainties in the effective
conformational energy calculations and the general difficulty of
reliably estimating reorganization energies.116

The projection of structures generated from the targeted and
the radius of gyration-guided NMSim simulations onto the plane
spanned by the first two ED modes obtained from the ensemble
of crystal structures is shown in Figure S5, Supporting Informa-
tion. Due to the biased sampling, movements of the protein
toward conformations that are further opened than the starting
structure, as observed in the unbiased case, do not occur. In
contrast, the sampling is more focused on generating conforma-
tions that lie in between the opened and closed conformations, as
expected. In the case of the radius of gyration-guided NMSim
simulation, the generated conformations cover an area on the
projection plane close to the intermediate structures [1dvr (A)
and (B)] that also shows a large density of projected conforma-
tions in the case of the unbiased simulations. This suggests that,
although the radius of gyration-guided NMSim simulation
focuses the sampling, the guidance is apparently gentle enough
so that intermediate structures can still be approached as in the
unbiased simulation (see also below).
Next, we investigated whether pathways generated by targeted

or radius of gyration-guidedNMSim simulations of ADK provide
a realistic representation of the sequence of conformational
changes that occur during the transition from the open to the
closed structure. For analyzing the order of closing of domains,
reaction coordinates described by Whitford et al.81 were used
(see Materials and Methods Section). As depicted in Figure 7, in
the targeted NMSim simulation, the closing of the LID domain
precedes the closing of the NMPbind domain. This is in
agreement with previous studies,58,81 which have suggested that
a sequential domain closure has evolved such as to prevent
nonproductive substrate binding.81 Out of 50 normal modes
available for the targeted NMSim simulation (eq 6), the first 5
lowest frequency modes are applied throughout most of the
transition (Figure 7), suggesting that the closing of the domains
follows a low-energy pathway. In fact, the initial closing of the

Figure 6. Projection of conformations from 10 independent trajectories generated by unbiased NMSim simulations (each colored separately) and 11
experimentally determined structures (large green squares) of adenylate kinase onto the plane described by the first 2 ED modes derived from the 11
experimentally determined structures.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100461k&iName=master.img-006.jpg&w=360&h=252
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LID domain (state a�b) is completely dominated by the first
normal mode, whereas the partial closing of theNMPbind domain
(state b�c) mainly occurs along the directions of the second and
third normal modes. Higher frequency modes become involved
from state e�f only, i.e., during the final approach of theNMPbind
domain to the closed conformation. Notably, a very similar picture
emerges in the radius of gyration-guided NMSim simulation of
ADK, although here no a priori knowledge about a closed ADK
conformation is used. The obtained sequence of domain closure
remarkably resembles the one obtained by targeted NMSim
simulations between states a�e. Both pathways differ only in
the last part (state e�f), where the LID domain moves closer to
the CORE domain in the radius of gyration-guided NMSim
simulation compared to the targeted NMSim simulation
(Figure 7). As for the NMPbind domain, a similar level of domain
closure is observed between states b�e in both simulations.
In order to further verify the generated pathways, 1 of the 11

crystal structures of ADK was assigned to each intermediate
pathway structure, using the respective lowest CR RMSD as a
criterion similar to a study by Maragakis and Karplus.82 Plots of
the CR RMSD between intermediate and crystal structures are
shown in Figure S6, Supporting Information. For the targeted
NMSim simulations, the assigned crystal structures observed
along the generated pathway [from open to closed: 4ake (A),
4ake (B), 1dvr (A), 1e4y (B), 1e4y (A), 1ank (A), 2eck (B), 1ake
(A)] are in good agreement with the previously suggested
sequence of structures.82 Similarly, crystal structures 4ake (A),
4ake (B), 1dvr (A), 1dvr (B), and 1ake (A) are assigned to the
pathway generated by radius of gyration-guided NMSim simula-
tions, which again agrees with the previously reported sequence
of crystal structures.82 This finding is particularly encouraging in
the case of 1dvr (A) and 1dvr (B), which lie in between the open
and closed ADK conformations, yet are approached up to
2.5�3.0 Å RMSD during the course of both simulations.

’CONCLUSION

Efficiently predicting conformational changes of biomacro-
molecules will be important for understanding biological func-
tion and will be valuable for modeling (macro)molecular
complex formation and in structure-based drug design. Here, a
novel three-step approach, termed NMSim, for multiscale mod-
eling of protein conformational changes has been developed that
incorporates information about preferred directions of protein
motions into a geometric simulation algorithm. The first two
steps are based on previous work in our lab.44 Initially, static
properties of the protein are determined by decomposing the
protein into rigid clusters using an all-atom representation of the
protein. In a second step, dynamic properties of the molecule
are revealed using an elastic network model representation of
the coarse-grained protein. The resulting rigid cluster normal
mode analysis provides directions of intrinsic motions in terms of
normal modes,43,44 which can be viewed as possible deforma-
tions of proteins along low-energy paths. It has been shown by
us44 and others38,43,102,119 that conformational changes of pro-
teins upon ligand binding occur preferentially along the direc-
tions of a few normal modes derived from an unbound protein
structure. In the third step, the recently introduced idea of
constrained geometric simulations of diffusive motions in
proteins34 is extended, aiming at an efficient sampling of con-
formational space. For this, backbone motions of the protein are
guided by low-frequency normal modes, whereas side-chains
perform diffusive motions biased toward energetically favorable
rotamer states. The generated structures are iteratively corrected
regarding steric clashes and constraint violations. In total, when
applied repetitively over all three steps, the procedure efficiently
generates a series of stereochemically allowed conformations that
lie preferentially in the subspace spanned by low-frequency
normal modes. The developed approach allows to perform three
simulation types: (i) unbiased exploration of the conformational
space; (ii) pathway generation by a targeted simulation; and (iii)
radius of gyration-guided simulation to foster the compaction of
a protein structure upon ligand binding.We note that in the latter
case no experimental radius of gyration is required as input.

Incorporating directional information distinguishes the
NMSim approach from other widely used geometry-based
simulation approaches, FRODA34 and CONCOORD.32,33

While FRODA and NMSim share a natural way of coarse
graining the protein structure,120 they differ at the simulation
level. In contrast to NMSim, FRODA simulates only diffusive
motions of flexible regions and rigid clusters without considering
any information about preferred directions of motion. This limits
the sampling of the conformational space by FRODA,121 parti-
cularly in those cases where proteins are rather flexible. The
CONCOORD approach iteratively satisfies interatomic distance
constraints to generate conformations starting from randomized
atomic coordinates. While this allows for a thorough sampling of
the conformational space,121 it precludes the generation of a
trajectory of consecutive protein conformations. Thus, from an
ensemble of CONCOORD generated conformations, no se-
quential ordering of conformational transitions could be de-
duced. Still, we note that none of the geometry-based simulation
approaches discussed here samples from a thermodynamic
ensemble and, hence, none provides a quantitative description
of the distribution of the generated conformations.

When applied to hen egg white lysozyme, NMSim simulations
compare favorably with state-of-the-art MD simulations in terms

Figure 7. Pathway of conformational transition of ADK generated by
targeted (small symbols) and radius of gyration-guided (large symbols)
NMSim simulations, which were started from the open conformation.
The abscissa denotes the distance between the LID domain and the
CORE domain centers of mass; the ordinate denotes the distance
between the NMPbind domain and the CORE domain centers of mass.
Symbols denote the normal modes used to generate an intermediate
conformation from a previous one. The start (unfilled diamond) and end
(filled diamond) states are represented by PDB codes 4ake and 1ake,
respectively. States along the trajectory are marked by a�f; see text for
details.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100461k&iName=master.img-007.jpg&w=240&h=163
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of root-mean-square fluctuations, extent of sampling, and stereo-
chemical quality as well as computational effort. When applied
to a data set of proteins where conformational changes have been
observed experimentally, either as domainmotions or motions of
functionally important loops, experimental conformational vari-
abilities are reproduced very well by theNMSim simulations for 4
out of 5 domain moving proteins with correlation coefficients r >
0.70 and as high as r = 0.92 in the case of ADK. In 7 out of 8 cases,
NMSim simulations starting from unbound structures are able to
sample conformations that are similar (RMSD < 3.1 Å) to ligand
bound conformations: Minimal RMSD between simulated con-
formations and respective bound conformations for 4 out 5
proteins with domain motions are between 1.0 (AST) and 3.1 Å
(ADK) and for proteins with loop motions are between 1.1
(CAPK) and 2.0 Å (TIM). Biasing the search toward structures
with lower radius of gyration considerably improves the sampling
of ligand-bound conformations in NMSim, without any a priori
information of the bound structure. This is valuable in light of
fully flexible docking approaches that require a pregenerated
conformational ensemble of the receptor.

The NMSim generated pathway of conformational change
from the unbound structure to the ligand bound structure of
ADK is validated by a comparison to experimental structures that
reflect different conformational states along the transition as
proposed by previous studies.81,82,122 Furthermore, the gener-
ated pathway describes the correct sequence of the domain
closing in that the closing of the LID domain precedes the
closing of the NMPbind domain.

The above results show that incorporating directional infor-
mation about collective motions into a constrained geometric
simulation-based approach allows for the thorough sampling of
biologically relevant conformational space. The NMSim ap-
proach may thus be a computationally efficient alternative to
MD simulations for conformation generation. The generated
conformations and pathways of conformational transitions can
serve as input to docking approaches, including receptor
flexibility,123 or tomore sophisticated techniques, such as nudged
elastic band simulations,110 transition path sampling,111 or
umbrella sampling.112,113

’APPENDIX

Rigid Cluster Normal Mode Analysis. RCNMA consists of
two steps. In the first step, a rigid cluster decomposition of the
protein is obtained by FIRST analysis,59 using an all-atom
representation. In the second step, a RTB analysis60 is performed
based on a coarse-grained ENM representation of the protein
consisting of rigid clusters connected by flexible links.

Rigid Cluster Decomposition. FIRST identifies and counts the
bond rotational degrees of freedom in a molecular framework,
whose vertices represent protein atoms andwhose edges represent
covalent and noncovalent (hydrogen bond and hydrophobic)
constraints within the protein.59,124,125 Flexibility in this network
results from dihedral rotations of bonds that are not locked in by
other bonds. Each bond is assigned by FIRST to be part of either a
rigid cluster or a flexible region. A rigid cluster forms a collection of
interlocked bonds for which only rigid-body motions (translation
and rotation) are allowed. Under-constrained regions in the
network are typically flexible links between rigid clusters.
The molecular framework that represents the protein is

completely defined by bond constraints between atoms and
next-nearest neighbor constraints that define coordination angles

between bonded atoms. Biologically important motions are in
many cases characterized by low-frequency, large-amplitude
structural fluctuations. By including constraints into the network
that represent strong forces, high-frequency motions can be
effectively quenched, thereby reducing the complexity of the
energy landscape. Here, covalent and hydrogen bonds, salt
bridges, and hydrophobic interactions are considered to be
strong forces. The configuration of double and partial double
bonds (peptide bonds) is restricted by additional constraints.124

The noncovalent interactions are modeled as described in
previous FIRST studies.124,126,127

Elastic network model. Based on a simplified representation of
the potential energy,103,128,129 the protein is described as a 3D
elastic network. Each amino acid is reduced to a single “particle”
(the CR atom), which acts as a junction in the network.
Interactions between these particles are modeled by Hookean
springs based on a harmonic pairwise potential,128 which results
in a total potential energy of the system given by eq 9:

V ¼ γ

2∑i ∑j
θðrc � r0ijÞðrij � r0ijÞ2 ð9Þ

where rc = 10 Å is the cutoff up to which interactions between the
CR atoms are taken into account; rij and rij

0 are the instantaneous
and equilibrium distances between atoms i and j, respectively;
θ (x) is the heaviside step function that accounts for the cutoff
effect of the interaction (it is 1 if x > 0 and 0 otherwise); and γ is a
phenomenological force constant assumed to be the same for all
pairwise interactions (it is set to 1 kcal mol�1 Å�2).
According to the ENM,43 the elements of a 3N� 3NHessian

matrixH (whereN is the number of CR atoms) are then obtained
from the second derivatives of V with respect to the Cartesian
coordinates of atoms i and j. H is diagonalized to obtain the
normal modes.

Coarse Graining in RCNMA. The FIRST analysis adds another
level of coarse graining of the protein structures. Each rigid
cluster forms a block in the RTB approach,37,60 and flexible
regions are modeled on a one-residue-per-block basis (in which
case only translational motions of the “block” are considered).
Interactions between these blocks are modeled as described for
the ENM (eq 9). The 3N � 3N matrix H is therefore reduced
to a 6n � 6n dimensional matrix Hsub by projecting H into
the subspace spanned by translation/rotation basis vectors of n
blocks according to eq 10:

Hsub ¼ PtHP ð10Þ

with P being an orthogonal 3N � 6n projection matrix of the
infinitesimal translation/rotation eigenvectors of each block.
This leads to a reduction of the memory requirement propor-
tional to (N/n)2 and computational time proportional to (N/n)3,
respectively. Diagonalization of the resulting matrix Hsub yields
the normal modes Usub and eigenvalues Λ (eq 11):

HsubUsub ¼ UsubΛ ð11Þ

Finally, atomic displacements can be obtained by expanding
back the eigenvectors Usub from the subspace spanned by
translation/rotation basis vectors of the blocks to the Cartesian
space (U) (eq 12):

U ¼ PUsub ð12Þ
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The 3N� 6n dimensional matrixU contains 6n normal modes
C
Fk

. The kth normal mode direction for the jth CR atom is then
given by C

Fk
j = [Ux,k,Uy,k,Uz,k], with x = 3*j� 2, y = 3*j � 1, and

z = 3*j.

Structure Correction

Covalent Bonds. All covalent bonds are modeled by equality
distance constraints between the bonded atoms. Additionally,
all bond angles in the covalent bond network are modeled as
equality distance constraints between the two nonvertex atoms
of the angle. Reference distances for these constraints are taken
from the input structure.

Noncovalent Bonds.Noncovalent bonds are modeled explicitly
and include hydrogen bonds, salt bridges, and hydrophobic
interactions. These are recognized from the input starting
structure using the FIRST approach59 and kept throughout the
simulation. For example, noncovalent bonds are neither broken
nor formed during the NMSim simulation. Each hydrogen bond
and salt bridge is modeled by three equality distance constraints
between the donor and acceptor atoms, a neighbor atom of the
acceptor and the donor atom, and a neighbor atom of the donor
and the acceptor atom. That way, hydrogen atoms need not be
considered in the NMSim simulation, which increases the
efficiency of the calculations. A neighbor atom is selected
randomly if the donor/acceptor atom is covalently bonded to
multiple atoms. Hydrophobic interactions are also recognized
from the input starting structure using the FIRST approach.59

Each carbon�carbon, carbon�sulfur, or sulfur�sulfur atom pair
is recognized as a hydrophobic interaction if the atoms in the pair
are within the sum of their van der Waals radii (vdW) plus a
cutoff. By default, the cutoff is set to 0.35 Å. Each hydrophobic
interaction is then modeled as an upper bound distance con-
straint between the interacting atoms, i.e., two hydrophobic
atoms can only be separated up to a maximum distance, which
allows the atoms to slide with respect to each other yet not
pull apart.

Steric Clashes. To avoid steric clashes, lower bound distance
constraints are defined between atoms that are neither involved
in covalent nor in noncovalent interactions (except hydrophobic
interactions). The minimum distance of the constraint is defined
as the sum of the atomic vdW radii. The latter are taken fromTsai
et al.130 and consider the hybridization states of heavy atoms.
This allows to implicitly model the presence of hydrogen atoms.
A tolerance factor, defined as the fraction of the sum of vdW radii,
is applied to allow a certain steric overlap of atoms (Table S2,
Supporting Information). The tolerance factor is higher for
atoms involved in 1�4 distance constraints, i.e., atom pairs that
are separated by three covalent bonds (Table S2, Supporting
Information).

Backbone Torsion Angles u/ψ. In order to generate protein
conformations with favorable secondary structure regions, three
basins of attraction for core regions of RL, RR, and β backbone
conformations are defined using the Ramachandran map de-
scribed by Morris et al.131 During the structure correction, j/ψ
angles that lie in allowed or generously allowed regions ofRL,RR,
and β feel an “attraction” toward the center of the core regions.
The attraction is generated by adjusting distance constraints
between atoms defined below such that if these distance con-
straints are fully satisfied, j/ψ angles lie in the center of one of
the core regions. In turn, disallowed regions are avoided by
corrections of steric clashes.

Except for Gly residues, j/ψ angles of residue r are modeled
by four distance constraints: For modeling j angles, distances
between Cr�1 and Cr as well as between Cr�1 and Cβ,r atoms are
considered. For modeling ψ angles, distances between Nr and
Nr+1 as well as between Nr+1 and Cβ,r atoms are considered
(Figure S7, Supporting Information). Reference distances for
these constraints are set based on the selected basin of attraction.
As these constraints are used to biasj/ψ angles toward favorable
secondary structure regions, the constraints are only weakly
adjusted during a structure correction cycle. This is achieved
by using a small adjustment factor (Table S2, Supporting
Information), which has been determined by empirical testing
to ensure a limited biasing.

Rotamer Modeling. After displacing side chain atoms in the
structure distortion step, the side chain is attracted toward a basin
derived from a rotamer library in the structure correction step.132

This biasing is done as follows: First, the nearest rotamer state is
selected for each residue r by searching a rotamer list, which is
specific for each amino acid type, for candidates such that the
candidate rotamers have all χ angles within a limit CHIDEV_
SELLIMIT (Table S1, Supporting Information) of the corre-
sponding χ angles of residue r. The nearest rotamer is then
selected from the set of candidates based on the smallest RMSD
from residue r. Second, in every structure correction iteration, the
χ angles of residue r are adjusted toward the corresponding χ
angles of the selected rotamer. The adjustment depends on the χ
angle deviation from the selected rotamer χ angle and an
adjustment factor (Table S2, Supporting Information). Again,
a small adjustment factor is used, which ensures a limited biasing
and structural stability. This follows observations according to
which the rotamericity of side chains is not perfect in an
ensemble of proteins. A recent study shows that between 5 and
30% of the side chains do not correspond to any rotameric
state.133

Backbone and Side Chain Planarity and Chirality. To acquire
side chain planarity in the structure correction step, a super-
imposition method is used. For this, perfect planar side chain
groups are least-squares fit onto their respective distorted
counterparts in the structure. Then, the atoms in the distorted
planar groups are moved to the coordinate positions of the
superimposed planar groups. Finally, distorted covalent and
noncovalent constraints are corrected. This procedure is re-
peated until convergence. To acquire backbone planarity, the
same procedure as for side chain planarity is used, but with a
relaxed adjustment factor for moving atoms of the distorted
planar group toward the superimposed plane (Table S2, Sup-
porting Information). Chirality is another important property to
conserve. Changes in the configuration of backbone CR atoms as
well as Cβ atoms of threonine and isoleucine side chains are
primarily avoided by performing only small structure distortion
steps (Table S1, Supporting Information). However, if a change
in a configuration is identified, then the generated structure is
rejected.

Constraint Adjustment. An iterative approach is applied to
satisfy the constraint network consisting of the above-described
covalent and noncovalent bonds and the stereochemical criteria.
The different types of constraints are satisfied in the sequence
shown in the structure correction module in Figure 2. In every
structure correction cycle, each constraint is adjusted using
respective adjustment factors until the difference between the
reference constraint property and the actual property falls below
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a respective tolerance value (see Table S2, Supporting Informa-
tion for adjustment and tolerance values) or until the number of
maximum iterations is exceeded (Table S1, Supporting
Information).
A schematic diagram for a distance constraint (i.e., constraints

for covalent, noncovalent, steric clashes, and backbone torsion
angles) correction is shown in Figure S8, Supporting Informa-
tion. Here two atoms i and j, connected by a distance constraint
with a reference distance dij, are moved in normal mode direc-
tions to new positions a

F
and b

F
, respectively, leading to an actual

distance dij0 between them. The constraint is corrected by adding
vectors G

F
ij = �G

F
ji, respectively, to the current position vectors

a
F

and b
F

to get new coordinate position vectors i0F and j0F,
respectively. The correction vector G

F
ij is calculated by

G
F
ij ¼ u

F

juFj
�Δdij�AdjustFactor ð13Þ

where u
F
= a

F � b
F
and Δdij = dij � dij

0
. The AdjustFactor for a

distance constraint can have a maximum value of 0.5, which
means that the constraint will be satisfied by moving both
connected atoms midway along the line joining the two atoms.

’ASSOCIATED CONTENT

bS Supporting Information. Tables with constraints and
simulation parameters used in NMSim, and tables comparing
different sets of HEWL structures in terms of RMSF, structural
quality, and effective conformational energies. Graphical repre-
sentations of: (i) RMSF of proteins with loop movements; (ii)
RMSD of conformations generated by unbiased NMSim simula-
tions for proteins with domain movements; (iii) RMSD of
conformations generated by unbiased or radius of gyration-
guided NMSim simulations for proteins with loop movements;
(iv) RMSD of conformations generated by radius of gyration-
guided NMSim simulations for proteins with domain move-
ments; (v) projection of ensembles generated by targeted and
radius of gyration-guided NMSim simulations onto the principal
directions obtained from experimental structures; (vi) RMSD of
conformations generated by targeted and radius of gyration-
guided NMSim simulations; (vii) distance constraints used for
modeling j and ψ torsion angles; (viii) distance constraint
correction; (ix) RMSF of HEWL ensembles; (x) projections of
HEWL ensembles onto MD essential space. This information is
available free of charge via the Internet at http://pubs.acs.org.
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