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ABSTRACT Themechanical response of a
TIM-barrel protein to an applied pressure has
been studied. We generated structures under
an applied pressure by assuming the volume
change to be a linear function of normal mode
variables. By Delaunay tessellation, the space
occupied by protein atoms is divided uniquely
into tetrahedra, whose four vertices corre-
spond to atomic positions. Based on the atoms
that define them, the resulting Delaunay tetra-
hedra are classified as belonging to various
secondary structures in the protein. The com-
pressibility of various regions identified with
respect to secondary structural elements in
this protein is obtained from volume changes
of respective regions in two structures with
and without an applied pressure. We found
that the b barrel region located at the core of
the protein is quite soft. The interior of the b
barrel, occupied by side chains of b strands, is
the softest. The helix, strand, and loop seg-
ments themselves are extremely rigid, while
the regions existing between these secondary
structural elements are soft. These results sug-
gest that the regions between secondary struc-
tural elements play an important role in pro-
tein dynamics. Another aspect of tetrahedra,
referred to as bond distance, is introduced to
account for rigidities of the tetrahedra. Bond
distance is a measure of separation of the
atoms of a tetrahedron in terms of number of
bonds along the polypeptide chain or side
chains. Tetrahedra with longer bond dis-
tances are found to be softer on average. From
this behavior, we derive a simple empirical
equation, which well describes the compress-
ibilities of various regions. Proteins 28:109–
116, 1997. r 1997 Wiley-Liss, Inc.
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INTRODUCTION

Protein tertiary structures are made up of such
secondary structural elements asa helices, b strands,
and loops, which are mutually well packed to form
three-dimensional structures. Having such struc-

tures, protein interior is expected to be mechanically
heterogeneous with relatively rigid and soft parts. In
this paper we are interested in which parts of a
protein are soft and which parts are rigid.
The elucidation of mechanical construction of pro-

teins is interesting from a number of points of view,
as follows:

1. There are classes of proteins whose functions are
to exert force on molecules interacting with them,
for example, kinesin or myosin. Such forces must
be balanced by forces induced in an interior of a
protein. Therefore, the mechanical properties are
directly related to functions.

2. Pressure is an important thermodynamic param-
eter, along with temperature, in studying the
physicochemical properties of protein. Response
of a protein conformation to an applied pressure
is governed by compressibility of various parts of
a molecule.

3. Compressibility is related to volume fluctuation.
Various conformational fluctuations, often lead-
ing to volume fluctuation, are supposed to play a
role in many types of protein functions.

Theoretical study of mechanical construction of
proteins was first carried out by Yamato et al.1 on
deoxymyoglobin, which is composed mainly of a
helices. They studied compressibilities of a helices
and regions between a helices and found that a
helices are quite rigid, but regions between a helices
are very soft. This fact explains experimental obser-
vations2,3 that helix-rich proteins generally show
high compressibilities.
The purpose of this paper is to extend the above

study to a protein that has a b sheet—triosephos-
phate isomerase (TIM). An eight-stranded parallel b
sheet surrounded by eight a helices in this protein
takes a barrellike form, called TIM barrel, in a
highly symmetric arrangement, which is found in
many proteins of known structures. The interior of
the b barrel forms a hydrophobic core.
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We define various regions of the molecule with
respect to secondary structural elements by employ-
ing the idea of Delaunay tessellation.4 The computa-
tional geometry methods of Delaunay and Voronoi
tessellations,5 which are mathematically dual to
each other, have been applied to study various
geometrical properties of protein structures.6–8 In
this paper we carry out Delaunay tessellation to
divide the space occupied by protein atoms into
tetrahedra, with all four vertices at atomic positions.
The resulting tetrahedra are classified according to
secondary structural elements to which the four
corner atoms belong. Compressibilities of various
regions of this protein are deduced by calculating
changes of volume caused by an applied pressure.

METHODS
Molecule Studied

TIM is studied as a typical TIM-barrel protein.
The x-ray coordinates of this protein are taken from
3TIM9 in Protein Data Bank (PDB).10 The structure
is shown in Figure 1 by a ribbon diagram. This
protein exists usually as a dimer consisting of two
identical monomers, each of which has 250 amino
acid residues. This number of residues is quite large
for carrying out even our calculations which work in
dihedral angle space. (This molecule has the small-
est number of residues among the molecules having
TIM-barrel structures and deposited in the PDB.)All
atoms including generated hydrogen atoms are
treated explicitly. Each monomer has 3911 atoms
and 1441 dihedral angles.
We carry out all calculations for the monomeric

state of this protein. In other words, we neglect all
intermonomer interactions existing in the dimeric

state. Monomers are in contact with each other at
one loop region, called the interface loop. Because we
aremainly interested in themechanical properties of
the b barrel region, which is in the core of each
monomer, the neglect of intermonomer interactions
in our calculation is expected not to influence results
significantly.

LinearApproximation of Volume Change

The mathematical formulation used in this paper
has been largely developed in our earlier paper,1 and
is described here only briefly.
Energy minimization is done by employing the

ECEPP energy function.11 Normal mode analysis
describes the dynamics of a molecule as a linear sum
of independent collective motions, called normal
modes. For such a description to be possible, the
conformational energy change DE from that of a
minimum-energy conformation must be given by

DE 5
1

2 o
i

vi
2si

2, (1)

where vi is the angular frequency of ith normal mode
and si is the ith normal mode variable. The thermal
average of fluctuation in each normal mode variable
is given by

7sisj8 5
kBT

vi
2

d ij, (2)

where kB is the Boltzmann constant, and T is the
absolute temperature.
In the spirit of normal mode analysis, we approxi-

mate the volume change associated with conforma-
tional fluctuation as a linear function of normal
mode variables

DV 5 o
i
visi, (3)

where vi is the derivative of volume with respect to
ith normal mode variable si at the minimum-energy
conformation. In this paper we use the excluded
volume6—the volume enclosed by the solvent acces-
sible surface—as the molecular volume.
As was shown in our earlier paper,1 the shift of the

average value of ith normal mode variable under a
pressure P is given by

si(P) 5 2 P
vi

vi
2
. (4)

Once values of normal mode variables are known, a
set of dihedral angles, and hence a set of cartesian
coordinates of the conformation under the applied
pressure, can be calculated. By calculating molecu-
lar volumes explicitly for conformations with and

Fig. 1. Ribbon diagram18 of triosephosphate isomerase (TIM).
‘‘N’’ and ‘‘C’’ indicate the position of N and C termini. Strands and
helices are indicated by ‘‘S’’ and ‘‘H’’.
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without applied pressure, volume compression can
be obtained, from which we obtain a compressibility.
Compressibility can also be obtained from the

magnitude of volume fluctuation under no applied
pressure. Within the linear approximation of volume
change, the volume fluctuation ,(DV)2. (and hence
the isothermal compressibility bT) can be calculated
analytically as12

71DV228 5 71o
i
visi2

2

8

5 kBT o
i
1vivi
2
2

, (5)

and

bT 5
1

kBTV0
71DV228,

5
1

V0
o
i
1vivi
2
2

, (6)

where V0 is the volume of the molecule at the
minimum-energy conformation.

DetailedAnalysis of Conformational
Deformation

Following the treatment in our earlier paper,1 we
carry out a detailed analysis of conformational defor-
mation from the minimum-energy conformation to
that at a pressure P as follows.
At first we divide the space occupied by protein

atoms into tetrahedrawhose vertices are at neighbor-
ing atoms. The method of division employed in our
earlier paper1 was slightly unsatisfactory in the
sense that a very small fraction of the space was not
included in any tetrahedra. This problem has been
solved by Yamato4 with the use of the Delaunay
tessellation.13 This method is mathematically dual
to the Voronoi tessellation in the sense that Delau-
nay tetrahedra are obtained by replacing each plane
surface of the Voronoi polyhedra by a straight-line
segment connecting a pair of atoms. Because Voronoi
tessellation uniquely divides the protein space into
polyhedra, its mathematically dual method, the De-
launay tessellation also uniquely divides the space
occupied by the protein atoms. The Delaunay tetra-
hedra correspond to the space shared by neighboring
atoms. We used the efficient algorithm of Delaunay
tessellation developed by Tanemura et al.13 All at-
oms except hydrogen atoms are treated explicitly in
the Delaunay tessellation.

Classification of the Delaunay Tetrahedra
According to the Structural Units

The tetrahedra are classified according to their
location with respect to various secondary structural
elements in the protein. As secondary structural

elements, we focus our attention on the eight a
helices and the eight b strands. We refer to the eight
b strands collectively as b barrel, and to the other
regions as loops. There are 15 loops connecting a
helices and b strands, plus N and C termini. Main-
chain and side-chain atoms are regarded as belong-
ing to the same structural elements, defined by the
main chain. Thus, each atom belongs to either helix
(H), barrel (B), or loops (L). We classify the tetrahe-
dra into ‘‘helix,’’ ‘‘barrel,’’ ‘‘loop,’’ ‘‘helix–barrel,’’ ‘‘helix–
loop,’’ ‘‘barrel–loop,’’ and ‘‘helix–barrel–loop,’’ depend-
ing on the types of its constituent atoms. The
classification is done as follows. If the types of four
atoms of a tetrahedron consist, for example, of only
H, of H and B, or of H, B, and L, then the tetrahedron
is classified into ‘‘helix,’’ ‘‘helix–barrel,’’ or ‘‘helix–
barrel–loop,’’ respectively. ‘‘Helix,’’ ‘‘barrel,’’ and ‘‘loop’’
are further classified into ‘‘intrahelix’’ and ‘‘interhe-
lix,’’ and so on. If four atoms of a ‘‘helix’’ tetrahedron
belong to the same helix, then the tetrahedron is
classified into ‘‘intrahelix.’’ Otherwise, it is classified
into ‘‘interhelix.’’
The b barrel is further classified into main-chain

‘‘sheet’’ region, ‘‘interior’’ region inside the barrel,
and ‘‘exterior’’ region outside the barrel. This classifi-
cation is made as follows: Each of four atoms in a b
barrel tetrahedron is classified into three types:
backbone atom, inside side-chain atom, and outside
side-chain atom. If three or four atoms of a tetrahe-
dron belong to backbone, inside or outside, then the
tetrahedron is classified as ‘‘sheet,’’ ‘‘interior,’’ or
‘‘exterior,’’ respectively. If two belong to backbone
and the other two to inside or outside, then the
tetrahedron is classified as ‘‘interior’’ or ‘‘exterior,’’
respectively. There were no other cases.

RESULTS
Normal ModeAnalysis

Figure 2 shows the distribution of normal mode
frequencies in this molecule. The total number of
normal modes is of course the same as the number of
independent dihedral angles. It is remarkable that
the frequency density distribution is very similar to
those of smaller proteins. The lowest and highest
frequencies are 3.05 cm21 and 1005.4 cm21, respec-
tively. There are 1105 modes with frequencies below
200 cm21, which account for 76.7% of all modes in
this calculation.
Figure 3 shows the atomic displacement vectors of

Ca atoms for three of the very-low frequency modes.
In the lowest frequency mode (Fig. 3a), a large
motion, localized on the interface loop in b/a frag-
ment number 3, is observed. This loop is in contact
with the other subunit in the dimeric state, but, as
stated above, we neglect this contact in this calcula-
tion. Therefore, this localized motion occurs only in
the monomeric state. In the second lowest frequency
mode (Fig. 3b), a nonlocalized collective motion is
observed. This motion is like a ‘‘hinge-bending’’ mo-
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tion between two structural units, one consisting of
b/a fragments 1, 2, 7, and 8, and the other, of
fragments 5 and 6. The active site is on the loop
between sixth b strand and a helix. Therefore this
motion is expected to play an important role in the
function of this protein. In the fourth lowest fre-
quency mode (Fig. 3c), b/a fragments 4 and 6 are
bending. This motion is also expected to play an
important role in the function.

Volume Fluctuation

From Equation (5) we see that the contribution
from each normal mode to volume fluctuation is
proportional to kBT(vi/vi)2. In Figure 4 this quantity
is plotted for modes with frequencies lower than 50
cm21 for T 5 300 K. (The contributions from modes
with frequency higher than 50 cm21 are small.) The
maximum contribution of 1922 Å6 comes from mode
2. It is clear that very low frequency modes make
dominant contributions. Root-mean-square (rms) vol-
ume fluctuation ,(DV)2.1/2 is 155.48 Å3. The rms
volume fluctuation, the excluded volume,14 and the
isothermal compressibility obtained from Equation
(6) are given in Table I. The magnitude of the
compressibility is in the range of experimental val-
ues for various globular proteins.

Conformational Deformation Due
To anApplied Pressure

The equilibrium conformation under an applied
pressure of 1,000 atm is generated from the shift of
normal mode variables given by Equation (4). The
structure of the minimum-energy conformation and
displacement vectors of Ca atoms are shown in
Figure 5. Although this molecule’s arrangement of
secondary structures is very symmetric, the magni-
tudes of atomic displacements under pressure are
not uniform, but are large in a region containing

both the N and C termini. These large displacements
may be attributed to the discontinuity of the polypep-
tide chain in this region. The change of the excluded
volume by the applied pressure and the compressibil-
ity calculated therefrom are also given in Table I.
Next we carry out Delaunay tessellation for the

two conformations. The numbers of tetrahedra for
theminimum-energy conformation and the conforma-
tion under pressure are 10,925 and 10,935, respec-
tively. The total volumes of the Delaunay tetrahedra
and the compressibility calculated from the volume
change are also given in Table I. Of the above
tetrahedra, about 90% (9,842) consist of the same set
of atoms and therefore are common to the two
conformations. The total volumes of these tetrahe-
dra and the compressibility calculated therefrom are
also given in Table I.
The four different calculated compressibilities,

that is—(1) obtained from the volume fluctuation
(11.9 3 10212 cm2/dyn), (2) calculated from the
compression of excluded volume (14.8 3 10212 cm2/
dyn), and (3) and (4) calculated from compression of
the volume of all the tetrahedra (17.5 3 10212

cm2/dyn) and the common tetrahedra (17.1 3 10212

cm2/dyn) are not identical. The difference between
(1) and (2) is due to the linear approximation of
volume change. Such a difference was also observed
in the case of myoglobin.1 We reported that the
linearity of volume change is approximately valid
with a possible underestimation of 20%. The differ-
ence in this study is also likely to be due to this
underestimation. The difference between (2) on the
one hand, and (3) and (4) on the other, is complicated.
Since the tetrahedra form the molecule’s core, the
difference should be attributed to the volume change
of the surface region. This then implies that the
surface region is more rigid than the interior region.
The volume of the surface region is 21,007 Å3, its
compression under the pressure is 237 Å3, and the
compressibility calculated therefrom is 11.1 3 10212

cm2/dyn. This point is discussed in a later section.

Mechanical Properties of Different Types
of Structural Units

Next we classify the common tetrahedra according
to their location with respect to various secondary
structural elements. The sum of volumes of tetrahe-
dra classified into each type is calculated for two
conformations, one under no pressure, the other
under an applied pressure of 1,000 atm, and from the
differences, isothermal compressibilities are evalu-
ated. The results, which are summarized in Table II,
indicate that the ‘‘intraunit’’ regions are extremely
rigid and the ‘‘interunit’’ regions are soft except for
the ‘‘interhelix’’ region. The regions between differ-
ent secondary structural elements are soft except for
the ‘‘helix–loop’’ region. The ‘‘b barrel interior’’ is
found to be strikingly soft.

Fig. 2. Histogram of frequencies of normal modes of TIM
calculated in the dihedral angle space. Number of normal modes
in each interval of 5 cm21 is shown. There are 14 more modes in
the range above 700 cm21.
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Classification of TetrahedraAccording
to Bond Distance

We have shown that the ‘‘intraunit’’ regions are
very rigid and the other regions, especially the ‘‘b
barrel interior,’’ are soft. We want to find a more
unified view to explain these findings. For this
purpose, we classify tetrahedra according to dis-
tances between constituent atoms through covalent

bonds. It is expected that the atoms of the intraunit
tetrahedra have shorter distances through covalent
bonds than those of other tetrahedra. A bond dis-
tance between a pair of atoms is defined as the
number of covalent bonds that exist in the shortest
route between them, and a bond distance of a
tetrahedron is defined as the sum of bond distances
for all possible six pairs of atoms out of the four

Fig. 3. Stereo drawing of atomic displacement vectors. a: The
lowest frequency normal mode with 3.05 cm21. b: The 2nd lowest
frequency mode with 3.35 cm21. c: The 4th lowest frequency
mode with 4.62 cm21. Broken lines indicate traces of Ca atoms,
and arrows indicate atomic displacement vectors. Green regions

are the residues whose secondary structures are b strands; red
regions, a helices; and black regions, neither of them. b/a
fragment numbers are also indicated only for those fragments
discussed in the text. All vectors are magnified 20 times the
thermal root-mean-square amplitude.
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atoms in the tetrahedron. The bond distances of
tetrahedra vary from 9 to 2930. Figure 6 shows the
distribution of bond distances and the compressibil-
ity of tetrahedra averaged in each interval, clearly
indicating the statistical relation between the bond
distances and the compressibility. From this behav-
ior, we classify the tetrahedra into three types:

Class I: those with short bond distances, from 9 to
150 (average compressibility, 5.32 3 10212

cm2/dyn)
Class II: those with intermediate bond distances,

from 150 to 700 (average compressibility,
17.2 3 10212 cm2/dyn)

Class III: long bond distances, above 700 (average
compressibility, 54.9 3 10212 cm2/dyn)

Bond distances of all ‘‘intraunit’’ tetrahedra are
below 150, and those of all ‘‘interunit’’ tetrahedra are
above 150. Thus, all ‘‘intraunit’’ tetrahedra and no
‘‘interunit’’ tetrahedra are in class I.
The volume ratios of these classes are also shown

in Table II for each structural region. In order to
describe the compressibility from these volume ra-
tios, we introduce an empirical equation:

b̂T 5 b1p1 1 bIIpII 1 bIIIpIII, (7)

where b̂T is the estimated compressibility, pI, pII, and
pIII are the volume ratios, and bI, bII, and bIII are the
above average compressibilities of classes I, II, and
III, respectively. The estimated compressibilities and
the errors of the estimation are also shown in Table
II. We see that the compressibility of each region can
be estimated quite well by the simple empirical
Equation (7), with only three parameters. The estima-
tion is less satisfactory for the ‘‘helix–barrel–loop’’
region. In this region, the average volume of tetrahe-
dra is much larger than those in the other regions.
This large volume, which implies large packing
defects, make this region softer than estimated.

DISCUSSION

In our previous study of compressibility on deoxy-
myoglobin,1 it was observed that the intrahelix was
rigid and the interhelix was soft. The average com-
pressibilities of tetrahedra were 0.60 3 10212 cm2/
dyn in the intrahelix and 8.94 3 10212 cm2/dyn in the
interhelix. These values are somewhat smaller than
the corresponding values in Table II. However, these
differences are mainly due to different definitions of
compressibilities. In the present paper the average
compressibility is calculated with weight equal to
the volume of respective tetrahedron, while in the
previous paper the average compressibility is calcu-
lated without volume weight. Since a tetrahedron
with larger volume tends to be softer, the volume-
weighted average compressibility should be larger.
In fact, unweighted compressibilities of intrahelix
and interhelix tetrahedra in TIM are 0.98 3 10212

cm2/dyn and 12.2 3 10212 cm2/dyn, respectively.
These values, smaller than the values in Table II, are
similar to the values obtained for deoxymyoglobin.
Therefore we may be able to say that compressibili-
ties of intrahelix and interhelix regions are generally
in the range of 1 3 10212 cm2/dyn and 10 3 10212

cm2/dyn, respectively.
We have obtained results showing that the protein

interior is mechanically very heterogeneous, various
regions having compressibilities from 2 3 10212

cm2/dyn to 40 3 10212 cm2/dyn. These values are to
be compared with the isothermal compressibility of
water (45 3 10212 cm2/dyn) and of ice (12 3 10212

cm2/dyn). Thus, this protein contains both the re-
gions more rigid than ice and the regions as soft as
water. From the experimental results,2,3 the com-

Fig. 4. Contribution to mean-square volume fluctuation from
each normal mode in the frequency range below 50 cm21.

TABLE I. The Isothermal Compressibilities
Obtained from theVolumeFluctuation

and theVolumeCompression*

bT
fluc 3 1012
(cm2/dyn) V0 (Å3)

7(DV)281/2
(Å3)

Wholemolecule 11.9 48908 155

bT
comp 3 1012
(cm2/dyn) V0 (Å3) DV (Å3)

Wholemolecule 14.8 48908 731
Region occupied by all the
tetrahedra 17.5 27900 494

Region occupied by the
common tetrahedra† 17.1 23826 412

*The volume of the minimum-energy conformation, V0; the
root-mean-square volume fluctuation, 7(DV )281/2; the volume
compression DV 5 V0 2 V1000, where V1000 is the volume under
the pressure of 1,000 atm; the isothermal compressibility
obtained from volume compression, bT

comp; and the isothermal
compressibility obtained from volume fluctuation, bT

comp.
†The region occupied by those tetrahedra common in the two
conformations, the minimum-energy conformation and the
conformation under the pressure of 1,000 atm.
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pressibilities of various globular proteins are found
to be in the range of 10–20 3 10212 cm2/dyn. Com-
pressibilities of both the surface and internal regions
of this protein were found within this range, with the
internal region slightly softer than the surface re-
gion. However, we have seen that strikingly soft
regions exist within the interior of this protein. Such
very soft regions contribute to make the interior
region of this protein softer than the surface region.
We carried out our normal mode analysis for the

protein in vacuum. Kidera et al.15,16 have applied the
method of the normal mode refinement of protein
x-ray crystallography to human lysozyme, and they
found that the magnitude of the internal contribu-

tions to the Debye-Waller factors is quantitatively in
good agreement with the theoretical prediction by
the normal mode analysis in vacuum. This finding
provides justification of the use of vacuum normal
mode analysis for the study of mechanical properties
of protein interior. Although the surface side chains
should become much less mobile in the absence of
solvent,17 such effect is expected to be negligible in
the dynamics of the core of protein.

CONCLUSIONS

We have studied the mechanical properties of a
TIM-barrel protein. Our method is based on normal
mode analysis and the linear approximation of vol-

Fig. 5. Stereo drawing of conformational deformation in TIM
due to application of 1,000 atm hydrostatic pressure. The dotted
line represents the Ca skeleton with the same color code as in

Figure 3, and the arrows represent displacement vectors of Ca
atoms, whose magnitude is magnified 10 times. Sequence num-
bers are also indicated.

TABLE II. Various Features of EachType of Structural Regions*

Number of
terahededra

bT 3 1012
(cm2/dyn)

V0

(Å3)
V
(Å3)

Volume ratio (%) b̂T 3 1012
(cm2/dyn)

(bT 2 b̂T) 3 1012
(cm2/dyn)I II III

common† 9842 17.1 23826 2.42 0.42 0.45 0.13 17.11 20.01

intra-helix 1955 2.80 2677 1.37 1.00 0.00 0.00 5.32 22.52
intra-loop 2415 4.15 3353 1.39 1.00 0.00 0.00 5.32 21.17
inter-helix 304 14.4 1178 3.88 0.00 0.97 0.03 18.33 23.93
inter-loop 732 28.4 2796 3.82 0.00 0.70 0.30 28.51 20.11
helix-barrel 361 21.5 1430 3.96 0.18 0.65 0.16 20.92 0.58
helix-loop 1825 12.5 5685 3.11 0.43 0.46 0.10 15.69 23.19
barrel-loop 939 28.5 2979 3.17 0.22 0.56 0.22 22.88 5.62
helix-barrel-loop 239 32.7 1363 5.70 0.12 0.78 0.10 19.54 13.16
b-barrel 1072 24.3 2366 2.21 0.18 0.57 0.25 24.49 20.19

sheet‡ 542 9.16 794 1.47 0.32 0.56 0.10 16.82 27.66
interior‡ 331 41.7 1090 3.29 0.06 0.50 0.44 33.08 8.62
exterior‡ 199 10.2 482 2.42 0.22 0.73 0.05 16.47 26.27

intra-strand§ 500 2.04 436 0.87 1.00 0.00 0.00 5.32 23.28
inter-strand§ 572 29.4 1930 3.37 0.00 0.69 0.31 28.89 0.51

*Isothermal compressibility, bT; volume of the minimum-energy conformation, V0; average volume of tetrahedron, V; the
compressibility estimated by Eq. (7), b̂T.
†Those tetrahedra common in the two conformation, the minimum-energy conformation and the conformation under the applied
pressure.
‡The b-barrel region is broken down into sheet, interior and exterior.
§The b-barrel region is also broken down into intra-strand and inter-strand.
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ume change with respect to changes in the normal
mode variables. Delaunay tessellation, which di-
vides the space occupied by a molecule into inter-
atomic spaces, makes it possible to analyze in detail
the effects of conformational changes on various
interatomic spaces.
The mechanical properties of this protein is found

to be very heterogeneous. Among secondary struc-
tures, a helices are found extremely rigid, and b
sheets are about three times softer than a helices.
Yet, parts between a helices and between an a helix
and the b sheet are found to have rigidity roughly in
the range of the average value over the whole protein
molecule, softer than a helices and the b sheet. The
part packed inside the barrel-shaped b sheet is found
to be extremely soft.
The bond distance, which is a measure of how far

apart the atoms of a tetrahedron are positioned
along the polypeptide chain, is a good measure to
account for the rigidities of structural regions. Tetra-
hedra with longer bond distances tend to be softer.
From the classification of tetrahedra according to
their bond distances, we have been able to introduce
a simple empirical equation to estimate the compress-
ibility. If this equation is valid for other proteins, we
can estimate the compressibilities of proteins di-
rectly from their static three-dimensional structures
by simply carrying out Delaunay tessellation and
calculating bond distances.
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