
Chapter 6
The Earth System Modeling Framework

Cecelia DeLuca, Gerhard Theurich and V. Balaji

6.1 Introduction

The Earth System Modeling Framework or ESMF1 is open source software for
building modeling components and coupling them together to form weather predic-
tion, climate, coastal, and other applications. ESMF was motivated by the desire
to exchange modeling components amongst centers and to reduce costs and effort
by sharing codes. The ESMF package is comprised of a superstructure of coupling
tools and component wrappers with standard interfaces, and an infrastructure of util-
ities for common functions, including calendar management, message logging, grid
transformations, and data communications. Infrastructure utilities, including a tool
for generation of interpolation weights, can be used independently from the super-
structure, enabling users to choose which parts of the software suit their application.
The project is distinguished by its strong emphasis on community governance and
distributed development.

ESMF was originally designed for tightly coupled applications in the climate
and weather domains. Tight coupling is exemplified by the data exchanges between
the ocean and atmosphere components of a climate model: a large volume of data
is exchanged frequently, and computational efficiency is a primary concern. Such
applications usually run on a single computer with hundreds or thousands of proces-
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sors, low-latency communications, and a Unix-based operating system. Almost all
components in these domains are written in Fortran, with just a few in C or C++.

As the ESMF customer base has grown to include modelers from other disciplines,
such as hydrology and space weather, the framework has evolved to support other
forms of coupling. For these modelers, ease of configuration, ease of use, and support
for heterogeneous coupling may take precedence over performance. Heterogeneity
here refers to programming language (Python, Java, etc. in addition to Fortran and
C), function (components for analysis, visualization, etc.), grids and algorithms,
and operating systems. In response, the ESMF team has introduced support for the
Windows platform, and is exploring approaches to language interoperability through
web service interfaces. It has introduced more general data structures and several
strategies for looser coupling, where components may be in separate executables, or
running on different computers.

In this chapter, we describe how coupling fits within the ESMF architecture, and
highlight how specific design strategies satisfy user requirements. We then outline
how modelers implement ESMF coupling in their applications. Finally, we review
alternative coupling strategies that have evolved to suit new communities using
ESMF.

6.2 Architectural Overview

The ESMF architecture is based on the concept of components. At its simplest,
a software component is a code that has a well-defined calling interface and a
coherent function (e.g. Szyperski 2002). Component-based design is a natural fit
for climate modeling, since components are ideally suited for the representation of
a system comprised of a set of substantial, distinct and interacting domains, such
as atmosphere, land, sea ice and ocean. Further, since Earth system domains are
often studied and modeled as collections of sub-processes (radiation and chemistry
in an atmosphere, for example) it is convenient to model climate applications as an
hierarchy of nested components.

Component-based software is also well-suited for the manner in which climate
models are developed and used. The multiple domains and processes in a model are
usually developed as separate codes by specialists. The creation of a viable climate
application requires the integration, testing and tuning of the pieces, a scientifically
and technically formidable task. When each piece is represented as a component
with a standard interface and behavior, that integration, at least at the technical level,
is more straightforward. Similarly, standard interfaces help to foster interoperability
of components, and the use of components in different contexts. This is a primary
concern for modelers, since they are motivated to explore and maintain alternative
versions of algorithms (such as different implementations of the governing fluid
equations of the atmosphere), whole physical domains (such as oceans), parame-
terizations (such as convection schemes), and configurations (such as standalone
versions of physical domains).



6 The Earth System Modeling Framework 45

There are two types of components in ESMF, Gridded Components and Coupler
Components. Gridded Components (ESMF_GridComps) represent the scientific
and computational functions in a model, and Coupler Components (ESMF_Cpl
Comps) contain the operations necessary to transform and transfer data between
them.

Each major physical domain in an ESMF climate or weather model is represented
as an ESMF Gridded Component with a standardized calling interface and arguments.
Physical processes or computational elements, such as radiative processes or I/O,
may also be represented as Gridded Components. ESMF Components can be nested,
so that parent components can contain child components with progressively more
specialized processes or refined grids.

As a climate or weather model steps forward in time, the physical domains repre-
sented by Gridded Components must periodically transfer interfacial fluxes. The
operations necessary to couple Gridded Components together may involve data redis-
tribution, spectral or grid transformations, time averaging, and/or unit conversions.
In ESMF, Coupler Components encapsulate these interactions.

Design goals for ESMF applications include the ability to use the same Gridded
Component in multiple contexts, to swap different implementations of a Gridded
Component into an application, and to assemble and extend coupled systems easily;
in short, software reuse and interoperability.

A design pattern that addresses these goals is the mediator, in which one object
encapsulates how a set of other objects interact (Gamma et al 1995). The mediator
serves as an intermediary, and keeps objects from referring to each other explicitly.
ESMF Coupler Components follow this pattern. It is an important aspect of the ESMF
technical strategy, because it enables the Gridded Components in an application to
be deployed in multiple contexts; that is, used in different coupled configurations
without changes to their source code. For example, the same atmosphere might in
one case be coupled to an ocean in a hurricane prediction model, and in another
coupled to a data assimilation system for numerical weather prediction.

Another advantage of the mediator pattern is that it promotes a simplified view of
inter-component interactions. The mediator encapsulates all the complexities of data
transformation between components. However, this can lead to excessive complexity
within the mediator itself, a recognized issue [ibid]. ESMF has addressed this issue
by encouraging users to create multiple, simpler Coupler Components and embed
them in a predictable fashion in a hierarchical architecture, instead of relying on
a single central coupler. This systematic approach is useful for modeling complex,
interdependent Earth system processes, since the interpretation of results in a many-
component application may rely on a scientist’s ability to grasp the flow of interac-
tions system-wide.

Computational environment and throughput requirements motivate a different
set of design strategies. ESMF component wrappers must not impose significant
overhead, and must operate efficiently on a wide range of computer architectures,
including desktop computers and petascale supercomputers. To satisfy these require-
ments, the ESMF software relies on memory-efficient and highly scalable algorithms
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(e.g., Devine et al. 2002). Currently ESMF has proven to run efficiently on tens of
thousands of processors.

How the components in a modeling application are mapped to computing
resources can have a significant impact on performance. Strategies vary for different
computer architectures, and ESMF is flexible enough to support multiple approaches.
ESMF components can run sequentially (one following the other, on the same
computing resources), concurrently (at the same time, on different computing
resources), or in combinations of these execution modes. Most ESMF applications
run as a single executable, meaning that all components are combined into one
program. Starting at a top-level driver, each level of an ESMF application controls
the partitioning of its resources and the sequencing of the components of the next
lower level.

6.3 Components in ESMF

Both Gridded and Coupler Components are implemented in the Fortran interface as
derived types with associated modules. Coupler Components share the same stan-
dard interfaces and arguments as Gridded Components. The key data structure in
these interfaces is the ESMF_State object, which holds the data to be transferred
between components. Each Gridded Component is associated with an import State,
containing the data required for it to run, and an export State, containing the data
it produces. Coupler Components arrange and execute the transfer of data from the
export States of producer Gridded Components into the import States of consumer
Gridded Components. The same Gridded Component can be a producer or consumer
at different times during model execution.

Modelers most frequently write their own Coupler Component internals using
ESMF classes bundled with the framework. These classes include methods for time
advancement, data redistribution, calculation of interpolation weights, application
of interpolation weights via a sparse matrix multiply, and other common functions.
ESMF does not currently offer tools for unit transformations or time averaging oper-
ations, so users must manage these operations themselves.

Coupler Components can be written to transform data between a pair of Gridded
Components, or a single Coupler Component can couple more than two Gridded
Components. Multiple couplers may be included in a single modeling application.
This is a natural strategy when the application is structured as an hierarchy of compo-
nents. Each level in the hierarchy usually has its own set of Coupler Components.

The need for modelers to write their own Gridded or Coupler Components has
been changing recently. Generic code is being bundled with ESMF that enables
reuse of simple Coupler Components and inheritance from prefabricated Gridded
Components. A compliance checker has also been introduced that provides feedback
on conformance to conventions during the development process. These additions are
making compliance easier and improving interoperability among Components.
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Fig. 6.1 ESMF enables applications such as the GEOS-5 atmospheric general circulation model to
be structured hierarchically, and reconfigured and extended easily. Each box in this diagram is an
ESMF Component

Figure 6.1 shows a simplified schematic of the Goddard Earth Observing System
Model, Version 5 (GEOS-5) atmospheric general circulation model, which was
constructed in a hierarchical fashion using ESMF. Each box is an ESMF Component.
Note that each level in the hierarchy addresses increasingly specific sub-processes
represented as Gridded Components, and that each level has its own Coupler Compo-
nent.

6.4 Remapping in ESMF

Remapping and interpolation in ESMF is accurate, flexible, and fast. ESMF supports
a wide variety of grids and remapping options. Generation of interpolation weights
and their application is fully parallel. ESMF supports first order conservative, bilinear,
and a higher-order finite element-based patch recovery method for remapping in
2D and in some cases 3D. Logically rectangular and unstructured grids are both
supported. There is a range of options with respect to masking and the handling of
poles and unmapped points. The remapping system is modular; the calculation of
interpolation weights can be performed either during a model run or offline, and the
application of weights can be made as a separate call.

6.5 Adopting ESMF

It is not necessary to rewrite the internals of model codes to implement coupling
using ESMF. Model code attaches to ESMF standard component interfaces via a user-
written translation layer that connects native data structures to ESMF data structures.
The steps in adopting ESMF are summarized by the acronym PARSE:
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1. Prepare user code. Split user code into initialize, run, and finalize methods and
decide on components, coupling fields, and control flow.

2. Adapt data structures. Wrap native model data structures in ESMF data structures
to conform to ESMF interfaces.

3. Register user methods. Attach user code initialize, run, and finalize methods to
ESMF Components through registration calls.

4. Schedule, synchronize, and send data between components. Write couplers using
ESMF redistribution, sparse matrix multiply, regridding, and/or user-specified
transformations.

5. Execute the application. Run components using an ESMF driver.

In the next two sections, we expand on these steps. The first three steps (PAR) focus
on wrapping user code in ESMF Components. The last two (SE) concern coupling
ESMF Components together.

6.5.1 Wrapping User Code in ESMF Components

The first step, preparing user code, involves deciding what elements of the application
will become Gridded Components. At this time, many climate and weather modeling
groups wrap major physical domains (land, ocean, etc.) as Gridded Components, and
expect to wrap atmospheric physics and dynamics as Gridded Components in the
future. A few applications, such as the GEOS-5 model at the National Aeronautics
and Space Administration (NASA), wrap sub-processes such as radiation as Gridded
Components as well. A key consideration is what elements of the model are expected
to be exchanged or used in multiple contexts; these elements are good candidates
for component interfaces. Once Gridded Components are identified, the user must
split each of them cleanly into initialize, run, and finalize sections, each callable as
a subroutine. These subroutines can have multiple phases; for example, run part one
and run part two.

This step also involves analyzing the data flow between components: what fields
need to be transferred, what transformations are required between components, how
frequently fields must be transferred, and what the data dependencies are. This
analysis should give the user a good idea of what Coupler Components will be
required, and what operations they should contain. In general, this first step takes the
longest.

6.5.2 Adapting Data Structures

The next step in the PARSE sequence is adapting native data structures to ESMF.
Here native model data is copied by reference or value into an ESMF data type. There
are multiple ESMF data types that can be used, ranging from simple ESMF_Array
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objects to ESMF_Field objects that store coordinate information and metadata.
Many applications contain multiple physical fields that share the same physical
domain. Collections of ESMF arrays and fields can be represented in a compact
way using ESMF_ArrayBundle and ESMF_FieldBundle objects.

All data exchanged between components is stored in ESMF import and export
State objects. These are simple containers that hold ESMF arrays, arraybundles,
fields, and fieldBundles. Once native data structures have been associated with ESMF
data types, they must be added by the user to the appropriate State objects. At this
point the user code is quite close to the required ESMF interfaces. A remaining task
is to wrap native calendar and time information into an ESMF_Clock object.
The Clock holds information about start time, stop time, time step, and calendar type,
and enables the user to set alarms related to specific events. The modeler may also
choose to use the ESMF_Config object to store configuration parameters. Config
is a straightforward utility that enables the application to read labels and values from
a text file.

The resulting user component methods, for initialize, run, and finalize, have ESMF
data structures at the calling interface, and look like this example initialize subroutine:
subroutine myOcean_Init(gridComp, importState, &

exportState, clock, rc)
type(ESMF_GridComp) :: gridComp
type(ESMF_State) :: importState
type(ESMF_State) :: exportState
type(ESMF_Clock) :: clock
integer, intent(out) :: rc

! Wrapping layer in which native arrays are extracted
! from model data structures, and referenced or copied
! into ESMF Arrays, ArrayBundles, Fields, or
! FieldBundles. References to these objects are then
! placed into import and export States.
! Scientific content of initialize routine goes here.

rc = ESMF_SUCCESS

end subroutine myOcean_Init

6.5.3 Registering User Methods

The third step, registering user methods, is relatively simple. In it the user-written
part of a Gridded or Coupler Component is associated with an ESMF_GridComp
or ESMF_CplComp derived type through a special SetServices routine. This is a
routine that the user must write, and declare public.
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Inside the SetServices routine the user calls ESMF SetEntryPoint methods that
associate the standard initialize/run/finalize ESMF Component methods with the
names of their corresponding user code subroutines. For example, a user routine
called myOcean_Init might be associated with the standard initialize routine for
a Gridded Component named myOcean. The sequence of calls is outlined below.

First the Gridded Component is created. This happens one level above the Gridded
Component code. This level may be a relatively small driver program, or it may be a
parent Gridded Component. The highest level of an hierarchical ESMF application
can be thought of as the “cap". Templates and examples are provided within ESMF
to show how the driver is structured.

The application driver would contain code similar to this:

type(ESMF_GridComp) :: oceanComp
oceanComp = ESMF_GridCompCreate(name="myOcean", rc=rc)

call ESMF_GridCompSetServices(gridcomp=oceanComp, &
userRoutine=mySetServices, rc=rc)

Here mySetServices is the user given name of the public component routine
that is responsible for setting the initialize, run and finalize entry points for ocean
Comp. If the Fortran subroutine names of the user’s initialize, run, and finalize
methods were myOcean_Init, myOcean_Run, and myOcean_Final, respec-
tively, the mySetServices method would contain the following calls:

call ESMF_GridCompSetEntryPoint(gridcomp=oceanComp, &
method=ESMF_SETINIT, userRoutine=myOcean_Init, rc=rc)

call ESMF_GridCompSetEntryPoint(gridcomp=oceanComp, &
method=ESMF_SETRUN, userRoutine=myOcean_Run, rc=rc)

call ESMF_GridCompSetEntryPoint(gridcomp=oceanComp, &
method=ESMF_SETFINAL, userRoutine=myOcean_Final,
rc=rc)

These calls link the two pieces of the component: the Gridded Component derived
type provided by the framework and the methods provided by the user. The result
is that myOcean model can be dispatched by a driver or by a parent component in
a generic way. The create and destroy operations for components are not linked to
user code; they act only on the component derived type.

Like the ESMF_GridCompCreate() and ESMF_GridCompSetServi
ces() calls, the initialize, run, and finalize methods are invoked from a driver or
parent component using standard ESMF-defined Component methods. They would
follow the ESMF_GridCompSetServices() call shown previously:
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call ESMF_GridCompInitialize(gridcomp=oceanComp, . . . ,

rc=rc)
call ESMF_GridCompRun(gridcomp=oceanComp, . . . , rc=rc)
call ESMF_GridCompFinalize(grdicomp=oceanComp, . . . ,

rc=rc)

The omitted arguments indicated by “. . .” are the optional importState,
exportState, and clock arguments. The State arguments are necessary to
import and export data to and from the component. The Clock argument provides a
means to synchronize the simulation time between different model components.

6.5.4 Coupling Between ESMF Components

A very simple ESMF coupled application might involve an application driver cap, a
parent Gridded Component, two child Gridded Components (e.g. an oceanComp
and an atmComp) that require an inter-component data exchange, and two Coupler
Components. The hierarchical structure results in calls cascading so that when, for
example, the initialize routine of a parent component is called, it contains and calls
the initialize routines of its children, which contain and call the initialize routines of
their children, and so on. The result is that a call to a Gridded Component initialize
method at the top of the hierarchy initializes all the Components in the hierarchy.

The next step, following the PARSE approach, involves scheduling, synchronizing,
and sending data between Components. A sequence similar to that shown for the
Gridded Component oceanComp would be followed in order to create and register
methods for a second Gridded Component atmComp and two Coupler Components,
oceanToAtmCpl and atmToOceanCpl.

Assuming atmComp needs the temperature field produced by oceanComp, the
oceanToAtmCpl Coupler Component is responsible for the correct data flow. If
both Gridded Components define the temperature field on the same physical grid,
but with their own custom distribution, a simple field redistribution can be used.
Otherwise, if the physical grids are different, an interpolation is necessary.

The required pre-computations for coupling are typically carried out during the
Coupler’s initialize phase, storing the complete exchange pattern in anESMF_Route
Handle object:

type(ESMF_RouteHandle) :: routehandle
ESMF_FieldRedistStore(srcField=oceanTempField, &

dstField=atmTempField, routehandle=routehandle,
rc=rc)

Here the oceanTempField and atmTempField are Fields from the ocean
Component’s export State and the atmosphere Component’s import State, respec-
tively. The actual data exchange between these Field objects takes place during the
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Coupler’s run phase. A data redistribution call would look like this:

call ESMF_FieldRedist(srcField=oceanTempField, &
dstField=atmTempField, routehandle=routehandle,
rc=rc)

6.5.5 Executing the Application

The last step, execution, combines all the pieces into a complete ESMF application.
The sequencing is specified in the application driver or parent Component. In the
following example, the ocean is run first; the ocean to atmosphere coupler commu-
nicates the ocean export State to the atmosphere import State; the atmosphere runs;
the atmosphere to ocean coupler communicates the atmosphere export State to the
ocean import State. This loop repeats until the stop time of the Clock is reached.

do while (.not. ESMF_ClockIsStopTime(clock=clock,
rc=rc))
call ESMF_GridCompRun(gridcomp=oceanComp, &
importState=oceanImportState, &
exportState=oceanExportState, clock=clock, rc=rc)

call ESMF_CplCompRun(cplcomp=oceanToAtmCpl, &
importState=oceanExportState, &
exportState=atmImportState, clock=clock, rc=rc)

call ESMF_GridCompRun(gridcomp=atmComp, &
importState=atmImportState, &
exportState=atmExportState, clock=clock, rc=rc)

call ESMF_CplCompRun(cplcomp=atmToOceanCpl, &
importState=atmExportState, &
exportState=oceanImportState, clock=clock, rc=rc)

call ESMF_ClockAdvance(clock=clock, rc=rc)
end do

6.6 Alternative Forms of Coupling

Two alternative modes of coupling that have been recently introduced are coupling
multiple executables and “direct" coupling. In order to couple multiple executables—
wholly separate programs—ESMF has been collaborating with the InterComm
project (Lee and Sussman 2004). Through an extension of ESMF Array class
methods, users can translate ESMF Arrays into their InterComm equivalent, and
perform sends and receives of data to InterComm applications. This work is
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supporting a space weather application in which an ESMF atmosphere couples to an
InterComm ionosphere.

Direct coupling was introduced as a way to initiate a data exchange without
needing to first return to a Coupler Component interface. The data exchange is
arranged within a Coupler Component, usually at initialization time, but it can be
invoked from deep within a Gridded Component. This is useful for many modeling
situations, including tightly linked physical processes and asynchronous I/O.

6.7 Conclusions and Perspective

ESMF has successfully built a diverse customer base that includes most of the major
climate and weather models in the US. Now in its third funding cycle, ESMF is
supported by the National Science Foundation (NFS), the Department of Defense,
National Oceanic and Atmospheric Administration (NOAA), and NASA. The devel-
opment team for ESMF and related projects is maintained at about 12 people. It is
based at the NOAA Earth System Research Laboratory and the Cooperative Institute
for Research in Environmental Science at the University of Colorado. In addition to
adding new features, the team provides dedicated user support, nightly regression
testing with a suite that includes thousands of tests and examples, and comprehensive
documentation.

Timing results for a variety of codes show that the overhead of using ESMF
Components is typically negligible (<3% of runtime), and that key operations scale
to tens of thousands of processors. Testing performance and exploring new architec-
tures are ongoing activities. Grid remapping and parallel communications are highly
scalable and extensible to many new grid types. The framework is very robust and
is supported on more than 24 platforms.

ESMF is continuing to add options and optimizations throughout the code. A
recent focus has been adding regridding capabilities, including a first order conser-
vative 3D method and higher order conservative method. Looking to the longer
term, the ESMF team is exploring the use of metadata to broker and automate
coupling services, and to create self-documenting applications. There is also an
effort underway to create an option to register ESMF Components for web service
interfaces. This will increase accessibility to coupling services for a broader range
of scenarios and communities.
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